Cargando…

CRISPR-Cas9 Mediated Genome Editing in Bicyclus anynana Butterflies

CRISPR-Cas9 is revolutionizing the field of genome editing in non-model organisms. The robustness, ease of use, replicability and affordability of the technology has resulted in its widespread adoption among researchers. The African butterfly Bicyclus anynana is an emerging model lepidopteran specie...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Tirtha Das, Monteiro, Antónia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526417/
https://www.ncbi.nlm.nih.gov/pubmed/31164559
http://dx.doi.org/10.3390/mps1020016
Descripción
Sumario:CRISPR-Cas9 is revolutionizing the field of genome editing in non-model organisms. The robustness, ease of use, replicability and affordability of the technology has resulted in its widespread adoption among researchers. The African butterfly Bicyclus anynana is an emerging model lepidopteran species in the field of evo-devo, with a sequenced genome and amenable to germ line transformation. However, efficient genome editing tools to accelerate the pace of functional genetic research in this species have only recently become available with CRISPR-Cas9 technology. Here, we provide a detailed explanation of the CRISPR-Cas9 protocol we follow in the lab. The technique has been successfully implemented to knock-out genes associated with eyespot development and melanin pigmentation.