Cargando…
The effect of desulfurization on the postharvest quality and sulfite metabolism in pulp of sulfitated “Feizixiao” Litchi (Litchi chinensis Sonn.) fruits
The residual sulfite caused by sulfur fumigation (SF) is a hazard to health and influenced the export trade of litchi. Desulfurization (DS) is a valid chemical method to reduce the residual sulfite. However, the effect of DS on fumigated litchi has not been studied at physiological and molecular lev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526637/ https://www.ncbi.nlm.nih.gov/pubmed/31139384 http://dx.doi.org/10.1002/fsn3.1008 |
Sumario: | The residual sulfite caused by sulfur fumigation (SF) is a hazard to health and influenced the export trade of litchi. Desulfurization (DS) is a valid chemical method to reduce the residual sulfite. However, the effect of DS on fumigated litchi has not been studied at physiological and molecular level. This study was aimed to evaluate the effect of DS (SF plus 3% desulfurizer) on the postharvest quality, sulfite residue, and the sulfite metabolism in sulfitated “Feizixiao” litchi during the 4°C storage. Results indicated that the DS promoted the color recovery of sulfitated litchi and achieved an effect similar to SF on controlling rot and browning. DS recovered the water content and respiration rate of sulfitated litchi pericarp. Thus, DS improves commodity properties of sulfitated litchi. Moreover, DS greatly reduced sulfite residue especially in pulp and ensured the edible safety of sulfitated litchi. The activities of sulfite oxidase, sulfite reductase, serine acetyltransferase, and O‐acetylserine(thiol) lyase in pulp increased after SF but fell down after DS while the expressions of their encoding genes decreased after SF but then rallied after DS. These results indicated the key role of these enzymes in sulfite metabolism after SF and DS changed the sulfite metabolism at both enzymatic and transcriptional level. It could be concluded that DS used in this study was an effective method for improving the color recovery and ensuring the edible safety of sulfitated litchi by not only chemical reaction but also both of enzymatic and transcriptional regulation. |
---|