Cargando…

Activity of T-type calcium channels is independent of CRMP2 in sensory neurons

Amongst the regulators of voltage-gated ion channels is the collapsin response mediator protein 2 (CRMP2). CRMP2 regulation of the activity and trafficking of NaV1.7 voltage-gated sodium channels as well as the N-type (CaV2.2) voltage-gated calcium channel (VGCC) has been reported. On the other hand...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Song, Shan, Zhiming, Zhang, Zhongjun, Moutal, Aubin, Khanna, Rajesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527066/
https://www.ncbi.nlm.nih.gov/pubmed/31025580
http://dx.doi.org/10.1080/19336950.2019.1608129
Descripción
Sumario:Amongst the regulators of voltage-gated ion channels is the collapsin response mediator protein 2 (CRMP2). CRMP2 regulation of the activity and trafficking of NaV1.7 voltage-gated sodium channels as well as the N-type (CaV2.2) voltage-gated calcium channel (VGCC) has been reported. On the other hand, CRMP2 does not appear to regulate L- (CaV1.x), P/Q- (CaV2.1), and R- (CaV2.3) type high VGCCs. Whether CRMP2 regulates low VGCCs remains an open question. Here, we asked if CRMP2 could regulate the low voltage-gated (T-type/CaV3.x) channels in sensory neurons. Reducing CRMP2 protein levels with short interfering RNAs yielded no change in macroscopic currents carried by T-type channels. No change in biophysical properties of the T-type currents was noted. Future studies pursuing CRMP2 druggability in neuropathic pain will benefit from the findings that CRMP2 regulates only the N-type (CaV2.2) calcium channels.