Cargando…
Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production
Trans-4-hydroxy-L-proline (Hyp) production by Escherichia coli (E. coli) in fermentation is a high-oxygen-demand process. E. coli secretes large amounts of soluble protein, especially in the anaphase of fermentation, which is an important factor leading to inadequate oxygen supply. And acetic acid t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527073/ https://www.ncbi.nlm.nih.gov/pubmed/30955438 http://dx.doi.org/10.1080/21655979.2019.1600966 |
_version_ | 1783419990264774656 |
---|---|
author | Liu, Xiaocui |
author_facet | Liu, Xiaocui |
author_sort | Liu, Xiaocui |
collection | PubMed |
description | Trans-4-hydroxy-L-proline (Hyp) production by Escherichia coli (E. coli) in fermentation is a high-oxygen-demand process. E. coli secretes large amounts of soluble protein, especially in the anaphase of fermentation, which is an important factor leading to inadequate oxygen supply. And acetic acid that is the major by-product of Hyp production accumulates under low dissolved oxygen (DO). To increase DO and achieve high-level Hyp production, soluble protein was hydrolysed by adding protease in Hyp fermentation. The optimal protease, concentration, and addition time were trypsin, 0.2 g/L, and 18 h, respectively. With the addition of trypsin, the soluble protein in Hyp fermentation decreased by 43.5%. The DO could be maintained at 20–30% throughout fermentation. Hyp production and glucose conversion rate were 45.3 g/L and 18.1%, which were increases of 24.1% and 8.4%, respectively. The accumulation of acetic acid was decreased by 52.1%. The metabolic flux of Hyp was increased by 44.2% and the flux of acetate was decreased by 51.0%. |
format | Online Article Text |
id | pubmed-6527073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-65270732020-04-07 Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production Liu, Xiaocui Bioengineered Research Paper Trans-4-hydroxy-L-proline (Hyp) production by Escherichia coli (E. coli) in fermentation is a high-oxygen-demand process. E. coli secretes large amounts of soluble protein, especially in the anaphase of fermentation, which is an important factor leading to inadequate oxygen supply. And acetic acid that is the major by-product of Hyp production accumulates under low dissolved oxygen (DO). To increase DO and achieve high-level Hyp production, soluble protein was hydrolysed by adding protease in Hyp fermentation. The optimal protease, concentration, and addition time were trypsin, 0.2 g/L, and 18 h, respectively. With the addition of trypsin, the soluble protein in Hyp fermentation decreased by 43.5%. The DO could be maintained at 20–30% throughout fermentation. Hyp production and glucose conversion rate were 45.3 g/L and 18.1%, which were increases of 24.1% and 8.4%, respectively. The accumulation of acetic acid was decreased by 52.1%. The metabolic flux of Hyp was increased by 44.2% and the flux of acetate was decreased by 51.0%. Taylor & Francis 2019-04-07 /pmc/articles/PMC6527073/ /pubmed/30955438 http://dx.doi.org/10.1080/21655979.2019.1600966 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Liu, Xiaocui Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title | Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title_full | Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title_fullStr | Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title_full_unstemmed | Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title_short | Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production |
title_sort | hydrolysing the soluble protein secreted by escherichia coli in trans-4-hydroxy-l-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-l-proline production |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527073/ https://www.ncbi.nlm.nih.gov/pubmed/30955438 http://dx.doi.org/10.1080/21655979.2019.1600966 |
work_keys_str_mv | AT liuxiaocui hydrolysingthesolubleproteinsecretedbyescherichiacoliintrans4hydroxylprolinefermentationincreaseddissolveoxygentopromotehighleveltrans4hydroxylprolineproduction |