Cargando…
Penalized logistic regression with low prevalence exposures beyond high dimensional settings
Estimating and selecting risk factors with extremely low prevalences of exposure for a binary outcome is a challenge because classical standard techniques, markedly logistic regression, often fail to provide meaningful results in such settings. While penalized regression methods are widely used in h...
Autores principales: | Doerken, Sam, Avalos, Marta, Lagarde, Emmanuel, Schumacher, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527211/ https://www.ncbi.nlm.nih.gov/pubmed/31107924 http://dx.doi.org/10.1371/journal.pone.0217057 |
Ejemplares similares
-
The case-crossover design via penalized regression
por: Doerken, Sam, et al.
Publicado: (2016) -
Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm
por: Avalos, Marta, et al.
Publicado: (2015) -
Fitting Penalized Logistic Regression Models Using QR Factorization
por: Klimaszewski, Jacek, et al.
Publicado: (2020) -
Comparison of standard and penalized logistic regression in risk model development
por: Yan, Yan, et al.
Publicado: (2022) -
Penalized logistic regression based on [Formula: see text] penalty for high-dimensional DNA methylation data
por: Jiang, Hong-Kun, et al.
Publicado: (2020)