Cargando…
Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections
PURPOSE: To compare manual corrections of liver masks produced by a fully automatic segmentation method based on convolutional neural networks (CNN) with manual routine segmentations in MR images in terms of inter-observer variability and interaction time. METHODS: For testing, patient’s precise ref...
Autores principales: | Chlebus, Grzegorz, Meine, Hans, Thoduka, Smita, Abolmaali, Nasreddin, van Ginneken, Bram, Hahn, Horst Karl, Schenk, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527212/ https://www.ncbi.nlm.nih.gov/pubmed/31107915 http://dx.doi.org/10.1371/journal.pone.0217228 |
Ejemplares similares
-
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing
por: Chlebus, Grzegorz, et al.
Publicado: (2018) -
Improving automatic liver tumor segmentation in late-phase MRI using multi-model training and 3D convolutional neural networks
por: Hänsch, Annika, et al.
Publicado: (2022) -
Multimodal image registration for liver radioembolization planning and patient assessment
por: Spahr, Nadine, et al.
Publicado: (2018) -
Predictive SIRT dosimetry based on a territorial model
por: Spahr, Nadine, et al.
Publicado: (2017) -
Landmark-based evaluation of a deformable motion correction for DCE-MRI of the liver
por: Strehlow, Jan, et al.
Publicado: (2018)