Cargando…
Ranking Regions, Edges and Classifying Tasks in Functional Brain Graphs by Sub-Graph Entropy
This paper considers analysis of human brain networks or graphs constructed from time-series collected from functional magnetic resonance imaging (fMRI). In the network of time-series, the nodes describe the regions and the edge weights correspond to the absolute values of correlation coefficients o...
Autores principales: | Sen, Bhaskar, Chu, Shu-Hsien, Parhi, Keshab K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527859/ https://www.ncbi.nlm.nih.gov/pubmed/31110317 http://dx.doi.org/10.1038/s41598-019-44103-8 |
Ejemplares similares
-
Sub-graph entropy based network approaches for classifying adolescent obsessive-compulsive disorder from resting-state functional MRI
por: Sen, Bhaskar, et al.
Publicado: (2020) -
The Structure Entropy-Based Node Importance Ranking Method for Graph Data
por: Liu, Shihu, et al.
Publicado: (2023) -
Adjusting protein graphs based on graph entropy
por: Peng, Sheng-Lung, et al.
Publicado: (2014) -
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
por: Tian, Hao, et al.
Publicado: (2022) -
Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs
por: Finzel, Bettina, et al.
Publicado: (2022)