Cargando…
Retinal image synthesis from multiple-landmarks input with generative adversarial networks
BACKGROUND: Medical datasets, especially medical images, are often imbalanced due to the different incidences of various diseases. To address this problem, many methods have been proposed to synthesize medical images using generative adversarial networks (GANs) to enlarge training datasets for facil...
Autores principales: | Yu, Zekuan, Xiang, Qing, Meng, Jiahao, Kou, Caixia, Ren, Qiushi, Lu, Yanye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528202/ https://www.ncbi.nlm.nih.gov/pubmed/31113438 http://dx.doi.org/10.1186/s12938-019-0682-x |
Ejemplares similares
-
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Photoacoustic image synthesis with generative adversarial networks
por: Schellenberg, Melanie, et al.
Publicado: (2022) -
Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
por: Pütz, Felix, et al.
Publicado: (2020) -
2D facial landmark localization method for multi-view face synthesis image using a two-pathway generative adversarial network approach
por: Alhlffee, Mahmood H.B., et al.
Publicado: (2022) -
Guiding the retraining of convolutional neural networks against adversarial inputs
por: Durán, Francisco, et al.
Publicado: (2023)