Cargando…
MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling
BACKGROUND: The aberrant expression of myotubularin-related protein 2 (MTMR2) has been found in some cancers, but little is known about the roles and clinical relevance. The present study aimed to investigate the roles and clinical relevance of MTMR2 as well as the underlying mechanisms in gastric c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528261/ https://www.ncbi.nlm.nih.gov/pubmed/31113461 http://dx.doi.org/10.1186/s13046-019-1186-z |
_version_ | 1783420177882284032 |
---|---|
author | Jiang, Lei Liu, Jun-yan Shi, Yan Tang, Bo He, Tao Liu, Jia-jia Fan, Jun-yan Wu, Bin Xu, Xian-hui Zhao, Yong-liang Qian, Feng Cui, You-hong Yu, Pei-wu |
author_facet | Jiang, Lei Liu, Jun-yan Shi, Yan Tang, Bo He, Tao Liu, Jia-jia Fan, Jun-yan Wu, Bin Xu, Xian-hui Zhao, Yong-liang Qian, Feng Cui, You-hong Yu, Pei-wu |
author_sort | Jiang, Lei |
collection | PubMed |
description | BACKGROUND: The aberrant expression of myotubularin-related protein 2 (MTMR2) has been found in some cancers, but little is known about the roles and clinical relevance. The present study aimed to investigate the roles and clinical relevance of MTMR2 as well as the underlying mechanisms in gastric cancer (GC). METHODS: MTMR2 expression was examined in 295 GC samples by using immunohistochemistry (IHC). The correlation between MTMR2 expression and clinicopathological features and outcomes of the patients was analyzed. The roles of MTMR2 in regulating the invasive and metastatic capabilities of GC cells were observed using gain-and loss-of-function assays both in vitro and in vivo. The pathways involved in MTMR2-regulating invasion and metastasis were selected and identified by using mRNA expression profiling. Functions and underlying mechanisms of MTMR2-mediated invasion and metastasis were further investigated in a series of in vitro studies. RESULTS: MTMR2 was highly expressed in human GC tissues compared to adjacent normal tissues and its expression levels were significantly correlated with depth of invasion, lymph node metastasis, and TNM stage. Patients with MTMR2(high) had significantly shorter lifespan than those with MTMR2(low). Cox regression analysis showed that MTMR2 was an independent prognostic indicator for GC patients. Knockdown of MTMR2 significantly reduced migratory and invasive capabilities in vitro and metastases in vivo in GC cells, while overexpressing MTMR2 achieved the opposite results. MTMR2 knockdown and overexpression markedly inhibited and promoted the epithelial-mesenchymal transition (EMT), respectively. MTMR2 mediated EMT through the IFNγ/STAT1/IRF1 pathway to promote GC invasion and metastasis. Phosphorylation of STAT1 and IRF1 was increased by MTMR2 knockdown and decreased by MTMR2 overexpression accompanying with ZEB1 down-regulation and up-regulation, respectively. Silencing IRF1 upregulated ZEB1, which induced EMT and consequently enhanced invasion and metastasis in GC cells. CONCLUSIONS: Our findings suggest that MTMR2 is an important promoter in GC invasion and metastasis by inactivating IFNγ/STAT1 signaling and may act as a new prognostic indicator and a potential therapeutic target for GC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1186-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6528261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65282612019-05-28 MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling Jiang, Lei Liu, Jun-yan Shi, Yan Tang, Bo He, Tao Liu, Jia-jia Fan, Jun-yan Wu, Bin Xu, Xian-hui Zhao, Yong-liang Qian, Feng Cui, You-hong Yu, Pei-wu J Exp Clin Cancer Res Research BACKGROUND: The aberrant expression of myotubularin-related protein 2 (MTMR2) has been found in some cancers, but little is known about the roles and clinical relevance. The present study aimed to investigate the roles and clinical relevance of MTMR2 as well as the underlying mechanisms in gastric cancer (GC). METHODS: MTMR2 expression was examined in 295 GC samples by using immunohistochemistry (IHC). The correlation between MTMR2 expression and clinicopathological features and outcomes of the patients was analyzed. The roles of MTMR2 in regulating the invasive and metastatic capabilities of GC cells were observed using gain-and loss-of-function assays both in vitro and in vivo. The pathways involved in MTMR2-regulating invasion and metastasis were selected and identified by using mRNA expression profiling. Functions and underlying mechanisms of MTMR2-mediated invasion and metastasis were further investigated in a series of in vitro studies. RESULTS: MTMR2 was highly expressed in human GC tissues compared to adjacent normal tissues and its expression levels were significantly correlated with depth of invasion, lymph node metastasis, and TNM stage. Patients with MTMR2(high) had significantly shorter lifespan than those with MTMR2(low). Cox regression analysis showed that MTMR2 was an independent prognostic indicator for GC patients. Knockdown of MTMR2 significantly reduced migratory and invasive capabilities in vitro and metastases in vivo in GC cells, while overexpressing MTMR2 achieved the opposite results. MTMR2 knockdown and overexpression markedly inhibited and promoted the epithelial-mesenchymal transition (EMT), respectively. MTMR2 mediated EMT through the IFNγ/STAT1/IRF1 pathway to promote GC invasion and metastasis. Phosphorylation of STAT1 and IRF1 was increased by MTMR2 knockdown and decreased by MTMR2 overexpression accompanying with ZEB1 down-regulation and up-regulation, respectively. Silencing IRF1 upregulated ZEB1, which induced EMT and consequently enhanced invasion and metastasis in GC cells. CONCLUSIONS: Our findings suggest that MTMR2 is an important promoter in GC invasion and metastasis by inactivating IFNγ/STAT1 signaling and may act as a new prognostic indicator and a potential therapeutic target for GC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1186-z) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-21 /pmc/articles/PMC6528261/ /pubmed/31113461 http://dx.doi.org/10.1186/s13046-019-1186-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Jiang, Lei Liu, Jun-yan Shi, Yan Tang, Bo He, Tao Liu, Jia-jia Fan, Jun-yan Wu, Bin Xu, Xian-hui Zhao, Yong-liang Qian, Feng Cui, You-hong Yu, Pei-wu MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title | MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title_full | MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title_fullStr | MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title_full_unstemmed | MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title_short | MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling |
title_sort | mtmr2 promotes invasion and metastasis of gastric cancer via inactivating ifnγ/stat1 signaling |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528261/ https://www.ncbi.nlm.nih.gov/pubmed/31113461 http://dx.doi.org/10.1186/s13046-019-1186-z |
work_keys_str_mv | AT jianglei mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT liujunyan mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT shiyan mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT tangbo mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT hetao mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT liujiajia mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT fanjunyan mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT wubin mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT xuxianhui mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT zhaoyongliang mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT qianfeng mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT cuiyouhong mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling AT yupeiwu mtmr2promotesinvasionandmetastasisofgastriccancerviainactivatingifngstat1signaling |