Cargando…
Knowledge-guided convolutional networks for chemical-disease relation extraction
BACKGROUND: Automatic extraction of chemical-disease relations (CDR) from unstructured text is of essential importance for disease treatment and drug development. Meanwhile, biomedical experts have built many highly-structured knowledge bases (KBs), which contain prior knowledge about chemicals and...
Autores principales: | Zhou, Huiwei, Lang, Chengkun, Liu, Zhuang, Ning, Shixian, Lin, Yingyu, Du, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528333/ https://www.ncbi.nlm.nih.gov/pubmed/31113357 http://dx.doi.org/10.1186/s12859-019-2873-7 |
Ejemplares similares
-
Leveraging prior knowledge for protein–protein interaction extraction with memory network
por: Zhou, Huiwei, et al.
Publicado: (2018) -
Knowledge-enhanced biomedical named entity recognition and normalization: application to proteins and genes
por: Zhou, Huiwei, et al.
Publicado: (2020) -
Improving the recall of biomedical named entity recognition with label re-correction and knowledge distillation
por: Zhou, Huiwei, et al.
Publicado: (2021) -
Chemical-induced disease relation extraction via convolutional neural network
por: Gu, Jinghang, et al.
Publicado: (2017) -
CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph
por: Wang, Wei, et al.
Publicado: (2020)