Cargando…

Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset

BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Chua, Winnie, Easter, Christina L., Guasch, Eduard, Sitch, Alice, Casadei, Barbara, Crijns, Harry J. G. M., Haase, Doreen, Hatem, Stéphane, Kääb, Stefan, Mont, Lluis, Schotten, Ulrich, Sinner, Moritz F., Hemming, Karla, Deeks, Jonathan J., Kirchhof, Paulus, Fabritz, Larissa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528378/
https://www.ncbi.nlm.nih.gov/pubmed/31113362
http://dx.doi.org/10.1186/s12872-019-1105-4
_version_ 1783420205877166080
author Chua, Winnie
Easter, Christina L.
Guasch, Eduard
Sitch, Alice
Casadei, Barbara
Crijns, Harry J. G. M.
Haase, Doreen
Hatem, Stéphane
Kääb, Stefan
Mont, Lluis
Schotten, Ulrich
Sinner, Moritz F.
Hemming, Karla
Deeks, Jonathan J.
Kirchhof, Paulus
Fabritz, Larissa
author_facet Chua, Winnie
Easter, Christina L.
Guasch, Eduard
Sitch, Alice
Casadei, Barbara
Crijns, Harry J. G. M.
Haase, Doreen
Hatem, Stéphane
Kääb, Stefan
Mont, Lluis
Schotten, Ulrich
Sinner, Moritz F.
Hemming, Karla
Deeks, Jonathan J.
Kirchhof, Paulus
Fabritz, Larissa
author_sort Chua, Winnie
collection PubMed
description BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. METHODS: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. DISCUSSION: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12872-019-1105-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6528378
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-65283782019-05-28 Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset Chua, Winnie Easter, Christina L. Guasch, Eduard Sitch, Alice Casadei, Barbara Crijns, Harry J. G. M. Haase, Doreen Hatem, Stéphane Kääb, Stefan Mont, Lluis Schotten, Ulrich Sinner, Moritz F. Hemming, Karla Deeks, Jonathan J. Kirchhof, Paulus Fabritz, Larissa BMC Cardiovasc Disord Study Protocol BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. METHODS: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. DISCUSSION: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12872-019-1105-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-21 /pmc/articles/PMC6528378/ /pubmed/31113362 http://dx.doi.org/10.1186/s12872-019-1105-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Study Protocol
Chua, Winnie
Easter, Christina L.
Guasch, Eduard
Sitch, Alice
Casadei, Barbara
Crijns, Harry J. G. M.
Haase, Doreen
Hatem, Stéphane
Kääb, Stefan
Mont, Lluis
Schotten, Ulrich
Sinner, Moritz F.
Hemming, Karla
Deeks, Jonathan J.
Kirchhof, Paulus
Fabritz, Larissa
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_full Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_fullStr Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_full_unstemmed Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_short Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_sort development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the catch me combined dataset
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528378/
https://www.ncbi.nlm.nih.gov/pubmed/31113362
http://dx.doi.org/10.1186/s12872-019-1105-4
work_keys_str_mv AT chuawinnie developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT easterchristinal developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT guascheduard developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT sitchalice developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT casadeibarbara developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT crijnsharryjgm developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT haasedoreen developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT hatemstephane developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT kaabstefan developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT montlluis developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT schottenulrich developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT sinnermoritzf developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT hemmingkarla developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT deeksjonathanj developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT kirchhofpaulus developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT fabritzlarissa developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset