Cargando…
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanis...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528378/ https://www.ncbi.nlm.nih.gov/pubmed/31113362 http://dx.doi.org/10.1186/s12872-019-1105-4 |
_version_ | 1783420205877166080 |
---|---|
author | Chua, Winnie Easter, Christina L. Guasch, Eduard Sitch, Alice Casadei, Barbara Crijns, Harry J. G. M. Haase, Doreen Hatem, Stéphane Kääb, Stefan Mont, Lluis Schotten, Ulrich Sinner, Moritz F. Hemming, Karla Deeks, Jonathan J. Kirchhof, Paulus Fabritz, Larissa |
author_facet | Chua, Winnie Easter, Christina L. Guasch, Eduard Sitch, Alice Casadei, Barbara Crijns, Harry J. G. M. Haase, Doreen Hatem, Stéphane Kääb, Stefan Mont, Lluis Schotten, Ulrich Sinner, Moritz F. Hemming, Karla Deeks, Jonathan J. Kirchhof, Paulus Fabritz, Larissa |
author_sort | Chua, Winnie |
collection | PubMed |
description | BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. METHODS: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. DISCUSSION: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12872-019-1105-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6528378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65283782019-05-28 Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset Chua, Winnie Easter, Christina L. Guasch, Eduard Sitch, Alice Casadei, Barbara Crijns, Harry J. G. M. Haase, Doreen Hatem, Stéphane Kääb, Stefan Mont, Lluis Schotten, Ulrich Sinner, Moritz F. Hemming, Karla Deeks, Jonathan J. Kirchhof, Paulus Fabritz, Larissa BMC Cardiovasc Disord Study Protocol BACKGROUND: Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. METHODS: We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. DISCUSSION: This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12872-019-1105-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-21 /pmc/articles/PMC6528378/ /pubmed/31113362 http://dx.doi.org/10.1186/s12872-019-1105-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Study Protocol Chua, Winnie Easter, Christina L. Guasch, Eduard Sitch, Alice Casadei, Barbara Crijns, Harry J. G. M. Haase, Doreen Hatem, Stéphane Kääb, Stefan Mont, Lluis Schotten, Ulrich Sinner, Moritz F. Hemming, Karla Deeks, Jonathan J. Kirchhof, Paulus Fabritz, Larissa Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title | Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_full | Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_fullStr | Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_full_unstemmed | Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_short | Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_sort | development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the catch me combined dataset |
topic | Study Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528378/ https://www.ncbi.nlm.nih.gov/pubmed/31113362 http://dx.doi.org/10.1186/s12872-019-1105-4 |
work_keys_str_mv | AT chuawinnie developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT easterchristinal developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT guascheduard developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT sitchalice developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT casadeibarbara developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT crijnsharryjgm developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT haasedoreen developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT hatemstephane developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT kaabstefan developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT montlluis developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT schottenulrich developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT sinnermoritzf developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT hemmingkarla developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT deeksjonathanj developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT kirchhofpaulus developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT fabritzlarissa developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset |