Cargando…

Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells

BACKGROUND: Nuclear factor-κB (NF-κB), an important transcription factor, participates in many physiological and pathological processes such as growth, differentiation, organogenesis, apoptosis, inflammation, and immune response, including tooth development. However, it is still unknown whether NF-κ...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yan, Chen, Guoqing, Yang, Yuzhi, Li, Ziyue, Chen, Tian, Sun, Wenhua, Yu, Mei, Pan, Kuangwu, Guo, Weihua, Tian, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528379/
https://www.ncbi.nlm.nih.gov/pubmed/31109359
http://dx.doi.org/10.1186/s13287-019-1252-7
Descripción
Sumario:BACKGROUND: Nuclear factor-κB (NF-κB), an important transcription factor, participates in many physiological and pathological processes such as growth, differentiation, organogenesis, apoptosis, inflammation, and immune response, including tooth development. However, it is still unknown whether NF-κB participates in the regulation of dental epithelial stem cells (DESCs) in postnatal rat incisors. Here, we investigated the specific differentiation regulatory mechanisms of the canonical NF-κB signaling pathway in DESCs and provided the mechanism of cross-talk involved in DESC differentiation. METHODS: After adding the activator or inhibitor of the NF-κB signaling pathway, Western blot and quantitative real-time PCR were used to analyze the expressions of amelogenesis-related genes and proteins and canonical transforming growth factor-β (TGF-β) signaling. In addition, we used amelogenesis induction in vitro by adding the activator or inhibitor of the NF-κB signaling pathway to the amelogenesis-induction medium, respectively. Recombinant TGF-β was used to activate the TGF-β pathway, and SMAD7 siRNA was used to downregulate the expression of SMAD7 in DESCs. RESULTS: We found that the expression of amelogenesis-related genes and proteins as well as TGF-β signaling were downregulated, while SMAD7 expression was increased in NF-κB-activated DESCs. In addition, NF-κB-inhibited DESCs exhibited opposite results compared with NF-κB-activated DESCs. Furthermore, the canonical NF-κB signaling pathway suppressed the canonical TGF-β-SMAD signaling by inducing SMAD7 expression involved in the regulation of DESC differentiation. CONCLUSIONS: These results indicate that the canonical NF-κB signaling pathway participated in the regulation of DESC differentiation, which was through upregulating SMAD7 expression and further suppressing the canonical TGF-β-SMAD signaling pathway. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1252-7) contains supplementary material, which is available to authorized users.