Cargando…

Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage

Management and disposal of pig farm seepage constitute a serious environmental challenge, and seepage discharge from agricultural waste‐water is considered to be one of the greatest contributors of organic substances, bacterial pathogens, and antibiotic resistance genes into the environment. The obj...

Descripción completa

Detalles Bibliográficos
Autores principales: Matjuda, Dikonketso Shirley‐may, Aiyegoro, Olayinka Ayobami
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528592/
https://www.ncbi.nlm.nih.gov/pubmed/30414264
http://dx.doi.org/10.1002/mbo3.737
_version_ 1783420254339203072
author Matjuda, Dikonketso Shirley‐may
Aiyegoro, Olayinka Ayobami
author_facet Matjuda, Dikonketso Shirley‐may
Aiyegoro, Olayinka Ayobami
author_sort Matjuda, Dikonketso Shirley‐may
collection PubMed
description Management and disposal of pig farm seepage constitute a serious environmental challenge, and seepage discharge from agricultural waste‐water is considered to be one of the greatest contributors of organic substances, bacterial pathogens, and antibiotic resistance genes into the environment. The objectives of this study were to assess the level of bacteriological pollution and to identify the resident antibiotic‐resistant genes of culturable bacteria from a studied pig farm seepage. Enumeration of the viable bacterial cell of plated bacteria suspensions (10(−1) to 10(−8) cfu/mL) was performed; also, identification of pure bacterial colonies was done using an API 20E bacterial identification kit. CLSI guidelines for antimicrobial susceptibility testing were adopted to determine the antibiotic susceptibility/resistance of the cultured bacterial isolates. Identification of resident‐resistant genes was done using molecular biology procedures. The results on viable cells in seepage samples ranged from 4.30 × 10(2) to 1.29 × 10(9 )cfu/mL. Pseudomonas luteola, Enterococcus vulneris, Salmonella choleraesuis spp arizonae, Escherichia coli, Enterobacter cloacae, Proteus mirabillis etc. were isolated from the pig farm soil samples. Almost all of the cultured isolates were resistant to Penicillin G, Vancomycin, Oxytetracycline, Spectinomycin, and Lincomycin. The most frequent resistant genes detected in the isolates were Van A, Van B, InuA, aph (3”)‐llla, bla(TEM,) Otr A, and Otr B. It was inferred from the study that Pig farm seepage has the ability to cause bacterial pollution that may negatively impact the natural environment, by introducing bacteria pathogens that harbor antibiotic‐resistant genes.
format Online
Article
Text
id pubmed-6528592
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65285922019-05-28 Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage Matjuda, Dikonketso Shirley‐may Aiyegoro, Olayinka Ayobami Microbiologyopen Original Articles Management and disposal of pig farm seepage constitute a serious environmental challenge, and seepage discharge from agricultural waste‐water is considered to be one of the greatest contributors of organic substances, bacterial pathogens, and antibiotic resistance genes into the environment. The objectives of this study were to assess the level of bacteriological pollution and to identify the resident antibiotic‐resistant genes of culturable bacteria from a studied pig farm seepage. Enumeration of the viable bacterial cell of plated bacteria suspensions (10(−1) to 10(−8) cfu/mL) was performed; also, identification of pure bacterial colonies was done using an API 20E bacterial identification kit. CLSI guidelines for antimicrobial susceptibility testing were adopted to determine the antibiotic susceptibility/resistance of the cultured bacterial isolates. Identification of resident‐resistant genes was done using molecular biology procedures. The results on viable cells in seepage samples ranged from 4.30 × 10(2) to 1.29 × 10(9 )cfu/mL. Pseudomonas luteola, Enterococcus vulneris, Salmonella choleraesuis spp arizonae, Escherichia coli, Enterobacter cloacae, Proteus mirabillis etc. were isolated from the pig farm soil samples. Almost all of the cultured isolates were resistant to Penicillin G, Vancomycin, Oxytetracycline, Spectinomycin, and Lincomycin. The most frequent resistant genes detected in the isolates were Van A, Van B, InuA, aph (3”)‐llla, bla(TEM,) Otr A, and Otr B. It was inferred from the study that Pig farm seepage has the ability to cause bacterial pollution that may negatively impact the natural environment, by introducing bacteria pathogens that harbor antibiotic‐resistant genes. John Wiley and Sons Inc. 2018-11-09 /pmc/articles/PMC6528592/ /pubmed/30414264 http://dx.doi.org/10.1002/mbo3.737 Text en © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Matjuda, Dikonketso Shirley‐may
Aiyegoro, Olayinka Ayobami
Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title_full Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title_fullStr Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title_full_unstemmed Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title_short Analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
title_sort analysis of bacteriological pollution and the detection of antibiotic resistance genes of prevailing bacteria emanating from pig farm seepage
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528592/
https://www.ncbi.nlm.nih.gov/pubmed/30414264
http://dx.doi.org/10.1002/mbo3.737
work_keys_str_mv AT matjudadikonketsoshirleymay analysisofbacteriologicalpollutionandthedetectionofantibioticresistancegenesofprevailingbacteriaemanatingfrompigfarmseepage
AT aiyegoroolayinkaayobami analysisofbacteriologicalpollutionandthedetectionofantibioticresistancegenesofprevailingbacteriaemanatingfrompigfarmseepage