Cargando…

Preservation of circadian rhythms by the protein folding chaperone, BiP

Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, co...

Descripción completa

Detalles Bibliográficos
Autores principales: Pickard, Adam, Chang, Joan, Alachkar, Nissrin, Calverley, Ben, Garva, Richa, Arvan, Peter, Meng, Qing-Jun, Kadler, Karl E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529331/
https://www.ncbi.nlm.nih.gov/pubmed/30888851
http://dx.doi.org/10.1096/fj.201802366RR
Descripción
Sumario:Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.—Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.