Cargando…

Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process

Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest – the evolution of original traits in parasitoids – and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is cen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim-Jo, Chami, Gatti, Jean-Luc, Poirié, Marylène
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529592/
https://www.ncbi.nlm.nih.gov/pubmed/31156469
http://dx.doi.org/10.3389/fphys.2019.00603
Descripción
Sumario:Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest – the evolution of original traits in parasitoids – and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging “time-dependent” view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.