Cargando…

Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements

Ultrasound (US) guided diffuse optical tomography has demonstrated great potential for breast cancer diagnosis, treatment monitoring, and chemotherapy response prediction. Optical measurements of four different wavelengths are used to reconstruct unknown optical absorption maps, which are then used...

Descripción completa

Detalles Bibliográficos
Autores principales: Uddin, K. M. Shihab, Zhu, Quing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529735/
https://www.ncbi.nlm.nih.gov/pubmed/31119903
http://dx.doi.org/10.1117/1.JBO.24.5.056005
Descripción
Sumario:Ultrasound (US) guided diffuse optical tomography has demonstrated great potential for breast cancer diagnosis, treatment monitoring, and chemotherapy response prediction. Optical measurements of four different wavelengths are used to reconstruct unknown optical absorption maps, which are then used to calculate the hemoglobin concentration distribution of the US visible lesion. Reconstructed absorption maps are prone to image artifacts from outliers in measurement data from tissue heterogeneity, bad coupling between tissue and light guides, and motion by patient or operator. We propose an automated iterative perturbation correction algorithm to reduce image artifacts based on the structural similarity index (SSIM) of absorption maps of four optical wavelengths. The initial image is estimated from the truncated pseudoinverse solution. The SSIM was calculated for each wavelength to assess its similarity with other wavelengths. An absorption map is repeatedly reconstructed and projected back into measurement space to quantify projection error. Outlier measurements with highest projection errors are iteratively removed until all wavelength images are structurally similar with SSIM values greater than a threshold. Clinical data demonstrate statistically significant improvement in image artifact reduction.