Cargando…
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
Computational image analysis is one means for evaluating digitized histopathology specimens that can increase the reproducibility and reliability with which cancer diagnoses are rendered while simultaneously providing insight as to the underlying mechanisms of disease onset and progression. A major...
Autores principales: | Ren, Jian, Hacihaliloglu, Ilker, Singer, Eric A., Foran, David J., Qi, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529804/ https://www.ncbi.nlm.nih.gov/pubmed/31158269 http://dx.doi.org/10.3389/fbioe.2019.00102 |
Ejemplares similares
-
The Rheology of the Carotid Sinus: A Path Toward Bioinspired Intervention
por: Iskander, Andrew, et al.
Publicado: (2021) -
Deep Learning-Based Recognition of Different Thyroid Cancer Categories Using Whole Frozen-Slide Images
por: Zhu, Xinyi, et al.
Publicado: (2022) -
Recurrence analysis on prostate cancer patients with Gleason score 7 using integrated histopathology whole-slide images and genomic data through deep neural networks
por: Ren, Jian, et al.
Publicado: (2018) -
IHC Color Histograms for Unsupervised Ki67 Proliferation Index Calculation
por: Geread, Rokshana S., et al.
Publicado: (2019) -
Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain
por: Keller, Anastasia V., et al.
Publicado: (2022)