Cargando…
Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529832/ https://www.ncbi.nlm.nih.gov/pubmed/31139685 http://dx.doi.org/10.1002/acn3.770 |
_version_ | 1783420492724568064 |
---|---|
author | Berry, James D. Paganoni, Sabrina Carlson, Kenzie Burke, Katherine Weber, Harli Staples, Patrick Salinas, Joel Chan, James Green, Jordan R. Connaghan, Kathryn Barback, Josh Onnela, Jukka Pekka |
author_facet | Berry, James D. Paganoni, Sabrina Carlson, Kenzie Burke, Katherine Weber, Harli Staples, Patrick Salinas, Joel Chan, James Green, Jordan R. Connaghan, Kathryn Barback, Josh Onnela, Jukka Pekka |
author_sort | Berry, James D. |
collection | PubMed |
description | OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping, to collect active (self‐report ALSFRS‐R surveys and speech recordings) and passive (phone sensors and logs) data from patients with ALS for approximately 24 weeks. In clinics, at baseline and every 3 months, we collected vital capacity, ALSFRS‐R, and ALS‐CBS at enrollment, week 12, and week 24. We also collected ALSFRS‐R by telephone at week 6. RESULTS: Baseline in‐clinic ALSFRS‐R and smartphone self‐report correlation was 0.93 (P < 0.001). ALSFRS‐R slopes were equivalent and within‐subject standard deviation was smaller for smartphone‐based self‐report (0.26 vs. 0.56). Use of Beiwe afforded weekly collection of speech samples amenable to a variety of analyses, and we found mean pause time to increase by 0.02 sec per month across the sample. INTERPRETATION: Smartphone‐based digital phenotyping in people with ALS is feasible and informative. Self‐administered smartphone ALSFRS‐R scores correlate highly with clinic‐based ALSFRS‐R scores, have low variability, and could be used in clinical trials. More research is required to fully analyze speech recordings and passive data, and to identify optimal digital markers for use in future ALS clinical trials. |
format | Online Article Text |
id | pubmed-6529832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65298322019-05-28 Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression Berry, James D. Paganoni, Sabrina Carlson, Kenzie Burke, Katherine Weber, Harli Staples, Patrick Salinas, Joel Chan, James Green, Jordan R. Connaghan, Kathryn Barback, Josh Onnela, Jukka Pekka Ann Clin Transl Neurol Research Articles OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping, to collect active (self‐report ALSFRS‐R surveys and speech recordings) and passive (phone sensors and logs) data from patients with ALS for approximately 24 weeks. In clinics, at baseline and every 3 months, we collected vital capacity, ALSFRS‐R, and ALS‐CBS at enrollment, week 12, and week 24. We also collected ALSFRS‐R by telephone at week 6. RESULTS: Baseline in‐clinic ALSFRS‐R and smartphone self‐report correlation was 0.93 (P < 0.001). ALSFRS‐R slopes were equivalent and within‐subject standard deviation was smaller for smartphone‐based self‐report (0.26 vs. 0.56). Use of Beiwe afforded weekly collection of speech samples amenable to a variety of analyses, and we found mean pause time to increase by 0.02 sec per month across the sample. INTERPRETATION: Smartphone‐based digital phenotyping in people with ALS is feasible and informative. Self‐administered smartphone ALSFRS‐R scores correlate highly with clinic‐based ALSFRS‐R scores, have low variability, and could be used in clinical trials. More research is required to fully analyze speech recordings and passive data, and to identify optimal digital markers for use in future ALS clinical trials. John Wiley and Sons Inc. 2019-04-03 /pmc/articles/PMC6529832/ /pubmed/31139685 http://dx.doi.org/10.1002/acn3.770 Text en © 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Berry, James D. Paganoni, Sabrina Carlson, Kenzie Burke, Katherine Weber, Harli Staples, Patrick Salinas, Joel Chan, James Green, Jordan R. Connaghan, Kathryn Barback, Josh Onnela, Jukka Pekka Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title | Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title_full | Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title_fullStr | Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title_full_unstemmed | Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title_short | Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression |
title_sort | design and results of a smartphone‐based digital phenotyping study to quantify als progression |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529832/ https://www.ncbi.nlm.nih.gov/pubmed/31139685 http://dx.doi.org/10.1002/acn3.770 |
work_keys_str_mv | AT berryjamesd designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT paganonisabrina designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT carlsonkenzie designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT burkekatherine designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT weberharli designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT staplespatrick designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT salinasjoel designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT chanjames designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT greenjordanr designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT connaghankathryn designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT barbackjosh designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression AT onnelajukkapekka designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression |