Cargando…

Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression

OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping...

Descripción completa

Detalles Bibliográficos
Autores principales: Berry, James D., Paganoni, Sabrina, Carlson, Kenzie, Burke, Katherine, Weber, Harli, Staples, Patrick, Salinas, Joel, Chan, James, Green, Jordan R., Connaghan, Kathryn, Barback, Josh, Onnela, Jukka Pekka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529832/
https://www.ncbi.nlm.nih.gov/pubmed/31139685
http://dx.doi.org/10.1002/acn3.770
_version_ 1783420492724568064
author Berry, James D.
Paganoni, Sabrina
Carlson, Kenzie
Burke, Katherine
Weber, Harli
Staples, Patrick
Salinas, Joel
Chan, James
Green, Jordan R.
Connaghan, Kathryn
Barback, Josh
Onnela, Jukka Pekka
author_facet Berry, James D.
Paganoni, Sabrina
Carlson, Kenzie
Burke, Katherine
Weber, Harli
Staples, Patrick
Salinas, Joel
Chan, James
Green, Jordan R.
Connaghan, Kathryn
Barback, Josh
Onnela, Jukka Pekka
author_sort Berry, James D.
collection PubMed
description OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping, to collect active (self‐report ALSFRS‐R surveys and speech recordings) and passive (phone sensors and logs) data from patients with ALS for approximately 24 weeks. In clinics, at baseline and every 3 months, we collected vital capacity, ALSFRS‐R, and ALS‐CBS at enrollment, week 12, and week 24. We also collected ALSFRS‐R by telephone at week 6. RESULTS: Baseline in‐clinic ALSFRS‐R and smartphone self‐report correlation was 0.93 (P < 0.001). ALSFRS‐R slopes were equivalent and within‐subject standard deviation was smaller for smartphone‐based self‐report (0.26 vs. 0.56). Use of Beiwe afforded weekly collection of speech samples amenable to a variety of analyses, and we found mean pause time to increase by 0.02 sec per month across the sample. INTERPRETATION: Smartphone‐based digital phenotyping in people with ALS is feasible and informative. Self‐administered smartphone ALSFRS‐R scores correlate highly with clinic‐based ALSFRS‐R scores, have low variability, and could be used in clinical trials. More research is required to fully analyze speech recordings and passive data, and to identify optimal digital markers for use in future ALS clinical trials.
format Online
Article
Text
id pubmed-6529832
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-65298322019-05-28 Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression Berry, James D. Paganoni, Sabrina Carlson, Kenzie Burke, Katherine Weber, Harli Staples, Patrick Salinas, Joel Chan, James Green, Jordan R. Connaghan, Kathryn Barback, Josh Onnela, Jukka Pekka Ann Clin Transl Neurol Research Articles OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping, to collect active (self‐report ALSFRS‐R surveys and speech recordings) and passive (phone sensors and logs) data from patients with ALS for approximately 24 weeks. In clinics, at baseline and every 3 months, we collected vital capacity, ALSFRS‐R, and ALS‐CBS at enrollment, week 12, and week 24. We also collected ALSFRS‐R by telephone at week 6. RESULTS: Baseline in‐clinic ALSFRS‐R and smartphone self‐report correlation was 0.93 (P < 0.001). ALSFRS‐R slopes were equivalent and within‐subject standard deviation was smaller for smartphone‐based self‐report (0.26 vs. 0.56). Use of Beiwe afforded weekly collection of speech samples amenable to a variety of analyses, and we found mean pause time to increase by 0.02 sec per month across the sample. INTERPRETATION: Smartphone‐based digital phenotyping in people with ALS is feasible and informative. Self‐administered smartphone ALSFRS‐R scores correlate highly with clinic‐based ALSFRS‐R scores, have low variability, and could be used in clinical trials. More research is required to fully analyze speech recordings and passive data, and to identify optimal digital markers for use in future ALS clinical trials. John Wiley and Sons Inc. 2019-04-03 /pmc/articles/PMC6529832/ /pubmed/31139685 http://dx.doi.org/10.1002/acn3.770 Text en © 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Berry, James D.
Paganoni, Sabrina
Carlson, Kenzie
Burke, Katherine
Weber, Harli
Staples, Patrick
Salinas, Joel
Chan, James
Green, Jordan R.
Connaghan, Kathryn
Barback, Josh
Onnela, Jukka Pekka
Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title_full Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title_fullStr Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title_full_unstemmed Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title_short Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
title_sort design and results of a smartphone‐based digital phenotyping study to quantify als progression
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529832/
https://www.ncbi.nlm.nih.gov/pubmed/31139685
http://dx.doi.org/10.1002/acn3.770
work_keys_str_mv AT berryjamesd designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT paganonisabrina designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT carlsonkenzie designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT burkekatherine designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT weberharli designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT staplespatrick designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT salinasjoel designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT chanjames designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT greenjordanr designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT connaghankathryn designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT barbackjosh designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression
AT onnelajukkapekka designandresultsofasmartphonebaseddigitalphenotypingstudytoquantifyalsprogression