Cargando…
Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
OBJECTIVE: The amyotrophic lateral sclerosis (ALS) trial outcome measures are clinic based. Active and passive smartphone data can provide important longitudinal information about ALS progression outside the clinic. METHODS: We used Beiwe, a research platform for smartphone‐based digital phenotyping...
Autores principales: | Berry, James D., Paganoni, Sabrina, Carlson, Kenzie, Burke, Katherine, Weber, Harli, Staples, Patrick, Salinas, Joel, Chan, James, Green, Jordan R., Connaghan, Kathryn, Barback, Josh, Onnela, Jukka Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529832/ https://www.ncbi.nlm.nih.gov/pubmed/31139685 http://dx.doi.org/10.1002/acn3.770 |
Ejemplares similares
-
Using Smartphones to Reduce Research Burden in a Neurodegenerative Population and Assessing Participant Adherence: A Randomized Clinical Trial and Two Observational Studies
por: Beukenhorst, Anna L, et al.
Publicado: (2022) -
Smartphone data during the COVID‐19 pandemic can quantify behavioral changes in people with ALS
por: Beukenhorst, Anna L., et al.
Publicado: (2020) -
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures
por: Johnson, Stephen A., et al.
Publicado: (2023) -
A systematic review of smartphone-based human activity recognition methods for health research
por: Straczkiewicz, Marcin, et al.
Publicado: (2021) -
Online Anomaly Detection for Smartphone-Based Multivariate Behavioral Time Series Data
por: Liu, Gang, et al.
Publicado: (2022)