Cargando…

Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization

AIMS: Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs tran...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jinxuan, Li, Xueling, Hu, Jiaxin, Chen, Fu, Qiao, Shuaihua, Sun, Xuan, Gao, Ling, Xie, Jun, Xu, Biao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529919/
https://www.ncbi.nlm.nih.gov/pubmed/30753344
http://dx.doi.org/10.1093/cvr/cvz040
_version_ 1783420508862152704
author Zhao, Jinxuan
Li, Xueling
Hu, Jiaxin
Chen, Fu
Qiao, Shuaihua
Sun, Xuan
Gao, Ling
Xie, Jun
Xu, Biao
author_facet Zhao, Jinxuan
Li, Xueling
Hu, Jiaxin
Chen, Fu
Qiao, Shuaihua
Sun, Xuan
Gao, Ling
Xie, Jun
Xu, Biao
author_sort Zhao, Jinxuan
collection PubMed
description AIMS: Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischaemia/reperfusion (I/R) and its implications in cardiac injury repair. METHODS AND RESULTS: Exosomes were isolated from the supernatant of MSCs using gradient centrifugation method. Administration of MSC-Exo to mice through intramyocardial injection after myocardial I/R reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both in vivo and in vitro. miRNA sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and toll-like receptor 4 (TLR4) as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial I/R. CONCLUSION: Our data indicate that MSC-Exo attenuates myocardial I/R injury in mice via shuttling miR-182 that modifies the polarization status of macrophages. This study sheds new light on the application of MSC-Exo as a potential therapeutic tool for myocardial I/R injury.
format Online
Article
Text
id pubmed-6529919
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-65299192019-05-28 Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization Zhao, Jinxuan Li, Xueling Hu, Jiaxin Chen, Fu Qiao, Shuaihua Sun, Xuan Gao, Ling Xie, Jun Xu, Biao Cardiovasc Res Spotlight Original Articles AIMS: Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischaemia/reperfusion (I/R) and its implications in cardiac injury repair. METHODS AND RESULTS: Exosomes were isolated from the supernatant of MSCs using gradient centrifugation method. Administration of MSC-Exo to mice through intramyocardial injection after myocardial I/R reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both in vivo and in vitro. miRNA sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and toll-like receptor 4 (TLR4) as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial I/R. CONCLUSION: Our data indicate that MSC-Exo attenuates myocardial I/R injury in mice via shuttling miR-182 that modifies the polarization status of macrophages. This study sheds new light on the application of MSC-Exo as a potential therapeutic tool for myocardial I/R injury. Oxford University Press 2019-06-01 2019-02-08 /pmc/articles/PMC6529919/ /pubmed/30753344 http://dx.doi.org/10.1093/cvr/cvz040 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Spotlight Original Articles
Zhao, Jinxuan
Li, Xueling
Hu, Jiaxin
Chen, Fu
Qiao, Shuaihua
Sun, Xuan
Gao, Ling
Xie, Jun
Xu, Biao
Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title_full Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title_fullStr Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title_full_unstemmed Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title_short Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization
title_sort mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through mir-182-regulated macrophage polarization
topic Spotlight Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529919/
https://www.ncbi.nlm.nih.gov/pubmed/30753344
http://dx.doi.org/10.1093/cvr/cvz040
work_keys_str_mv AT zhaojinxuan mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT lixueling mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT hujiaxin mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT chenfu mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT qiaoshuaihua mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT sunxuan mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT gaoling mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT xiejun mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization
AT xubiao mesenchymalstromalcellderivedexosomesattenuatemyocardialischaemiareperfusioninjurythroughmir182regulatedmacrophagepolarization