Cargando…
Computational models for the prediction of adverse cardiovascular drug reactions
BACKGROUND: Predicting adverse drug reactions (ADRs) has become very important owing to the huge global health burden and failure of drugs. This indicates a need for prior prediction of probable ADRs in preclinical stages which can improve drug failures and reduce the time and cost of development th...
Autores principales: | Jamal, Salma, Ali, Waseem, Nagpal, Priya, Grover, Sonam, Grover, Abhinav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530172/ https://www.ncbi.nlm.nih.gov/pubmed/31118067 http://dx.doi.org/10.1186/s12967-019-1918-z |
Ejemplares similares
-
Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins
por: Jamal, Salma, et al.
Publicado: (2021) -
Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis
por: Nagpal, Priya, et al.
Publicado: (2020) -
Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models
por: Jamal, Salma, et al.
Publicado: (2017) -
Machine Learning From Molecular Dynamics Trajectories to Predict Caspase-8 Inhibitors Against Alzheimer’s Disease
por: Jamal, Salma, et al.
Publicado: (2019) -
Artificial Intelligence and Machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis
por: Jamal, Salma, et al.
Publicado: (2020)