Cargando…
Deep Learning Methods for Predicting Disease Status Using Genomic Data
Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530791/ https://www.ncbi.nlm.nih.gov/pubmed/31131151 |
_version_ | 1783420699161919488 |
---|---|
author | Wu, Qianfan Boueiz, Adel Bozkurt, Alican Masoomi, Arya Wang, Allan DeMeo, Dawn L Weiss, Scott T Qiu, Weiliang |
author_facet | Wu, Qianfan Boueiz, Adel Bozkurt, Alican Masoomi, Arya Wang, Allan DeMeo, Dawn L Weiss, Scott T Qiu, Weiliang |
author_sort | Wu, Qianfan |
collection | PubMed |
description | Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature search. All four articles first used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. These deep learning approaches outperformed existing prediction methods, such as prediction based on transcript-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed. |
format | Online Article Text |
id | pubmed-6530791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-65307912019-05-22 Deep Learning Methods for Predicting Disease Status Using Genomic Data Wu, Qianfan Boueiz, Adel Bozkurt, Alican Masoomi, Arya Wang, Allan DeMeo, Dawn L Weiss, Scott T Qiu, Weiliang J Biom Biostat Article Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature search. All four articles first used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. These deep learning approaches outperformed existing prediction methods, such as prediction based on transcript-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed. 2018-12-11 2018 /pmc/articles/PMC6530791/ /pubmed/31131151 Text en This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wu, Qianfan Boueiz, Adel Bozkurt, Alican Masoomi, Arya Wang, Allan DeMeo, Dawn L Weiss, Scott T Qiu, Weiliang Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title | Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title_full | Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title_fullStr | Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title_full_unstemmed | Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title_short | Deep Learning Methods for Predicting Disease Status Using Genomic Data |
title_sort | deep learning methods for predicting disease status using genomic data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530791/ https://www.ncbi.nlm.nih.gov/pubmed/31131151 |
work_keys_str_mv | AT wuqianfan deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT boueizadel deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT bozkurtalican deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT masoomiarya deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT wangallan deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT demeodawnl deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT weissscottt deeplearningmethodsforpredictingdiseasestatususinggenomicdata AT qiuweiliang deeplearningmethodsforpredictingdiseasestatususinggenomicdata |