Cargando…
Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees
Identifying potential protein-ligand interactions is central to the field of drug discovery as it facilitates the identification of potential novel drug leads, contributes to advancement from hits to leads, predicts potential off-target explanations for side effects of approved drugs or candidates,...
Autores principales: | Li, Li, Koh, Ching Chiek, Reker, Daniel, Brown, J. B., Wang, Haishuai, Lee, Nicholas Keone, Liow, Hien-haw, Dai, Hao, Fan, Huai-Meng, Chen, Luonan, Wei, Dong-Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531441/ https://www.ncbi.nlm.nih.gov/pubmed/31118426 http://dx.doi.org/10.1038/s41598-019-43125-6 |
Ejemplares similares
-
Genome-wide prediction using Bayesian additive regression trees
por: Waldmann, Patrik
Publicado: (2016) -
Detection of Left Ventricular Hypertrophy Using Bayesian Additive Regression Trees: The MESA
por: Sparapani, Rodney, et al.
Publicado: (2019) -
The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions
por: Clarke, Gerald P., et al.
Publicado: (2020) -
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
por: Zhang, Tianyu, et al.
Publicado: (2020) -
Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis
por: Hu, Wenbiao, et al.
Publicado: (2011)