Cargando…
A Feature based Reconstruction Model for Fluorescence Microscopy Image Denoising
The advent of Fluorescence Microscopy over the last few years have dramatically improved the problem of visualization and tracking of specific cellular objects for biological inference. But like any other imaging system, fluorescence microscopy has its own limitations. The resultant images suffer fr...
Autores principales: | Maji, Suman Kumar, Yahia, Hussein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531475/ https://www.ncbi.nlm.nih.gov/pubmed/31118450 http://dx.doi.org/10.1038/s41598-019-43973-2 |
Ejemplares similares
-
SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
por: Prigent, Sylvain, et al.
Publicado: (2023) -
Denoising Single Images by Feature Ensemble Revisited
por: Fahim, Masud An Nur Islam, et al.
Publicado: (2022) -
Image denoising in acoustic microscopy using block-matching and 4D filter
por: Gupta, Shubham Kumar, et al.
Publicado: (2023) -
Dual tree complex wavelet transform based denoising of optical microscopy images
por: Bal, Ufuk
Publicado: (2012) -
An interactive ImageJ plugin for semi-automated image denoising in electron microscopy
por: Roels, Joris, et al.
Publicado: (2020)