Cargando…

Glyceryl trinitrate blocks staphyloxanthin and biofilm formation in Staphylococcus aureus

BACKGROUND: Staphylococcus aureus is an important nosocomial bacterium that is responsible for a number of infections that may be fatal. The treatment of such infections is limited by emergence of antibiotic resistance. Targeting virulence of Staphylococcus aureus may provide an alternative option t...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbas, Hisham A, Elsherbini, Ahmed M, Shaldam, Moutaz A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Makerere Medical School 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531949/
https://www.ncbi.nlm.nih.gov/pubmed/31148964
http://dx.doi.org/10.4314/ahs.v19i1.10
Descripción
Sumario:BACKGROUND: Staphylococcus aureus is an important nosocomial bacterium that is responsible for a number of infections that may be fatal. The treatment of such infections is limited by emergence of antibiotic resistance. Targeting virulence of Staphylococcus aureus may provide an alternative option to antibiotic that may bypass the emergence of resistant strains due to lack of stress on viability. OBJECTIVES: Investigation of the ability of glyceryl trinitrate (GTN) to inhibit staphyloxanthin, biofilm and tolerance to oxidative stress. METHODS: The disk sensitivity method was used to detect the methicillin resistance of Staphylococcus aureus. The effect of sub-inhibitory concentration of GTN on biofilm formation, staphyloxanthin production and tolerance to oxidative stress was evaluated. Molecular docking study was used to investigate the ability of GTN to bind to dehydrosqualene synthase enzyme. RESULTS: GTN showed a significant inhibition of biofilm, staphyloxanthin and tolerance to oxidative stress. In the molecular docking study, it was found that GTN could bind to dehydrosqualene synthase enzyme by hydrogen bonding, electrostatic interaction and pi-cation interaction. CONCLUSION: The present study revealed the ability of GTN to serve as a potential anti-virulence candidate for attenuation of S. aureus pathogenicity.