Cargando…
NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
BACKGROUND: Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532147/ https://www.ncbi.nlm.nih.gov/pubmed/31117948 http://dx.doi.org/10.1186/s12859-019-2876-4 |
_version_ | 1783420952831328256 |
---|---|
author | Schenck, Ryan O. Lakatos, Eszter Gatenbee, Chandler Graham, Trevor A. Anderson, Alexander R.A. |
author_facet | Schenck, Ryan O. Lakatos, Eszter Gatenbee, Chandler Graham, Trevor A. Anderson, Alexander R.A. |
author_sort | Schenck, Ryan O. |
collection | PubMed |
description | BACKGROUND: Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predicting and assessing neoantigens from tumor variants that may stimulate immune response. RESULTS: Here we offer NeoPredPipe (Neoantigen Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their corresponding recognition potentials for both single and multi-region tumor samples. NeoPredPipe is able to quickly provide summary information for researchers, and clinicians alike, on predicted neoantigen burdens while providing high-level insights into tumor heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes. Given an example dataset we show how NeoPredPipe is able to rapidly provide insights into neoantigen heterogeneity, burden, and immune stimulation potential. CONCLUSIONS: Through the integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a contiguous means of processing single and multi-region sequence data. NeoPredPipe is user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely available at https://github.com/MathOnco/NeoPredPipe. |
format | Online Article Text |
id | pubmed-6532147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65321472019-05-28 NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline Schenck, Ryan O. Lakatos, Eszter Gatenbee, Chandler Graham, Trevor A. Anderson, Alexander R.A. BMC Bioinformatics Software BACKGROUND: Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predicting and assessing neoantigens from tumor variants that may stimulate immune response. RESULTS: Here we offer NeoPredPipe (Neoantigen Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their corresponding recognition potentials for both single and multi-region tumor samples. NeoPredPipe is able to quickly provide summary information for researchers, and clinicians alike, on predicted neoantigen burdens while providing high-level insights into tumor heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes. Given an example dataset we show how NeoPredPipe is able to rapidly provide insights into neoantigen heterogeneity, burden, and immune stimulation potential. CONCLUSIONS: Through the integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a contiguous means of processing single and multi-region sequence data. NeoPredPipe is user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely available at https://github.com/MathOnco/NeoPredPipe. BioMed Central 2019-05-22 /pmc/articles/PMC6532147/ /pubmed/31117948 http://dx.doi.org/10.1186/s12859-019-2876-4 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Schenck, Ryan O. Lakatos, Eszter Gatenbee, Chandler Graham, Trevor A. Anderson, Alexander R.A. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title | NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title_full | NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title_fullStr | NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title_full_unstemmed | NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title_short | NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline |
title_sort | neopredpipe: high-throughput neoantigen prediction and recognition potential pipeline |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532147/ https://www.ncbi.nlm.nih.gov/pubmed/31117948 http://dx.doi.org/10.1186/s12859-019-2876-4 |
work_keys_str_mv | AT schenckryano neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline AT lakatoseszter neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline AT gatenbeechandler neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline AT grahamtrevora neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline AT andersonalexanderra neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline |