Cargando…
Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1)
OBJECTIVE: Peritoneal fibrosis remains a serious complication of long-term peritoneal dialysis (PD) leading to peritoneal membrane ultrafiltration failure. Epithelial–mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Curcumin has been previo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532179/ https://www.ncbi.nlm.nih.gov/pubmed/31143210 http://dx.doi.org/10.1186/s11658-019-0157-x |
_version_ | 1783420963745955840 |
---|---|
author | Zhao, Jun-Li Guo, Mei-Zi Zhu, Jun-Jun Zhang, Ting Min, Dan-Yan |
author_facet | Zhao, Jun-Li Guo, Mei-Zi Zhu, Jun-Jun Zhang, Ting Min, Dan-Yan |
author_sort | Zhao, Jun-Li |
collection | PubMed |
description | OBJECTIVE: Peritoneal fibrosis remains a serious complication of long-term peritoneal dialysis (PD) leading to peritoneal membrane ultrafiltration failure. Epithelial–mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Curcumin has been previously shown to inhibit EMT of renal tubular epithelial cells and prevent renal fibrosis. There are only limited reports on inhibition of PMCs-EMT by curcumin. This study aimed to investigate the effect of curcumin on the regulation of EMT and related pathway in PMCs treated with glucose-based PD. METHODS: EMT of human peritoneal mesothelial cells (HMrSV5) was induced with glucose-based peritoneal dialysis solutions (PDS). Cells were divided into a control group, PDS group, and PDS group receiving varied concentrations of curcumin. Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability, and a transwell migration assay was used to verify the capacity of curcumin to inhibit EMT in HMrSV5 cells. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the EMT. RESULTS: High glucose PDS decreased cell viability and increased migratory capacity. Curcumin reversed growth inhibition and migration capability of human peritoneal mesothelial cells (HPMCs). In HMrSV5 cells, high glucose PDS also decreased expression of epithelial markers, and increased expression of mesenchymal markers, a characteristic of EMT. Real-time RT-PCR and western blot revealed that, compared to the 4.25% Dianeal treated cells, curcumin treatment resulted in increased expression of E-cadherin (epithelial marker), and decreased expression of α-SMA (mesenchymal markers) (P < 0.05). Furthermore, curcumin reduced mRNA expression of two extracellular matrix protein, collagen I and fibronectin. Curcumin also reduced TGF-β1 mRNA and supernatant TGF-β1 protein content in the PDS-treated HMrSV5 cells (P < 0.05). Furthermore, it significantly reduced protein expression of p-TAK1, p-JNK and p-p38 in PDS-treated HMrSV5 cells. CONCLUSIONS: Our results demonstrate that curcumin showed an obvious protective effect on PDS-induced EMT of HMrSV5 cells and suggest implication of the TAK1, p38 and JNK pathway in mediating the effects of curcumin in EMT of MCs. |
format | Online Article Text |
id | pubmed-6532179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65321792019-05-29 Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) Zhao, Jun-Li Guo, Mei-Zi Zhu, Jun-Jun Zhang, Ting Min, Dan-Yan Cell Mol Biol Lett Research Letter OBJECTIVE: Peritoneal fibrosis remains a serious complication of long-term peritoneal dialysis (PD) leading to peritoneal membrane ultrafiltration failure. Epithelial–mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Curcumin has been previously shown to inhibit EMT of renal tubular epithelial cells and prevent renal fibrosis. There are only limited reports on inhibition of PMCs-EMT by curcumin. This study aimed to investigate the effect of curcumin on the regulation of EMT and related pathway in PMCs treated with glucose-based PD. METHODS: EMT of human peritoneal mesothelial cells (HMrSV5) was induced with glucose-based peritoneal dialysis solutions (PDS). Cells were divided into a control group, PDS group, and PDS group receiving varied concentrations of curcumin. Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability, and a transwell migration assay was used to verify the capacity of curcumin to inhibit EMT in HMrSV5 cells. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the EMT. RESULTS: High glucose PDS decreased cell viability and increased migratory capacity. Curcumin reversed growth inhibition and migration capability of human peritoneal mesothelial cells (HPMCs). In HMrSV5 cells, high glucose PDS also decreased expression of epithelial markers, and increased expression of mesenchymal markers, a characteristic of EMT. Real-time RT-PCR and western blot revealed that, compared to the 4.25% Dianeal treated cells, curcumin treatment resulted in increased expression of E-cadherin (epithelial marker), and decreased expression of α-SMA (mesenchymal markers) (P < 0.05). Furthermore, curcumin reduced mRNA expression of two extracellular matrix protein, collagen I and fibronectin. Curcumin also reduced TGF-β1 mRNA and supernatant TGF-β1 protein content in the PDS-treated HMrSV5 cells (P < 0.05). Furthermore, it significantly reduced protein expression of p-TAK1, p-JNK and p-p38 in PDS-treated HMrSV5 cells. CONCLUSIONS: Our results demonstrate that curcumin showed an obvious protective effect on PDS-induced EMT of HMrSV5 cells and suggest implication of the TAK1, p38 and JNK pathway in mediating the effects of curcumin in EMT of MCs. BioMed Central 2019-05-22 /pmc/articles/PMC6532179/ /pubmed/31143210 http://dx.doi.org/10.1186/s11658-019-0157-x Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Letter Zhao, Jun-Li Guo, Mei-Zi Zhu, Jun-Jun Zhang, Ting Min, Dan-Yan Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title | Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title_full | Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title_fullStr | Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title_full_unstemmed | Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title_short | Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1) |
title_sort | curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (hmrsv5) through regulation of transforming growth factor-activated kinase 1 (tak1) |
topic | Research Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532179/ https://www.ncbi.nlm.nih.gov/pubmed/31143210 http://dx.doi.org/10.1186/s11658-019-0157-x |
work_keys_str_mv | AT zhaojunli curcuminsuppressesepithelialtomesenchymaltransitionofperitonealmesothelialcellshmrsv5throughregulationoftransforminggrowthfactoractivatedkinase1tak1 AT guomeizi curcuminsuppressesepithelialtomesenchymaltransitionofperitonealmesothelialcellshmrsv5throughregulationoftransforminggrowthfactoractivatedkinase1tak1 AT zhujunjun curcuminsuppressesepithelialtomesenchymaltransitionofperitonealmesothelialcellshmrsv5throughregulationoftransforminggrowthfactoractivatedkinase1tak1 AT zhangting curcuminsuppressesepithelialtomesenchymaltransitionofperitonealmesothelialcellshmrsv5throughregulationoftransforminggrowthfactoractivatedkinase1tak1 AT mindanyan curcuminsuppressesepithelialtomesenchymaltransitionofperitonealmesothelialcellshmrsv5throughregulationoftransforminggrowthfactoractivatedkinase1tak1 |