Cargando…

Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities

BACKGROUND: Optical measurement techniques and recent advances in wearable technology have made heart rate (HR) sensing simpler and more affordable. OBJECTIVES: The Polar OH1 is an arm worn optical heart rate monitor. The objectives of this study are two-fold; 1) to validate the OH1 optical HR senso...

Descripción completa

Detalles Bibliográficos
Autores principales: Hettiarachchi, Imali T., Hanoun, Samer, Nahavandi, Darius, Nahavandi, Saeid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532910/
https://www.ncbi.nlm.nih.gov/pubmed/31120968
http://dx.doi.org/10.1371/journal.pone.0217288
Descripción
Sumario:BACKGROUND: Optical measurement techniques and recent advances in wearable technology have made heart rate (HR) sensing simpler and more affordable. OBJECTIVES: The Polar OH1 is an arm worn optical heart rate monitor. The objectives of this study are two-fold; 1) to validate the OH1 optical HR sensor with the gold standard of HR measurement, electrocardiography (ECG), over a range of moderate to high intensity physical activities, 2) to validate wearing the OH1 at the temple as an alternative location to its recommended wearing location around the forearm and upper arm. METHODS: Twenty-four individuals participated in a physical exercise protocol, by walking on a treadmill and riding a stationary spin bike at different speeds while the criterion measure, ECG and Polar OH1 HR were recorded simultaneously at three different body locations; forearm, upper arm and the temple. Time synchronised HR data points were compared using Bland-Altman analyses and intraclass correlation. RESULTS: The intraclass correlation between the ECG and Polar OH1, for the aggregated data, was 0.99 and the estimated mean bias ranged 0.27–0.33 bpm for the sensor locations. The three sensors exhibited a 95% limit of agreement (LoA: forearm 5.22, -4.68 bpm; upper arm 5.15, -4.49; temple 5.22, -4.66). The mean of the ECG HR for the aggregated data was 112.15 ± 24.52 bpm. The intraclass correlation of HR values below and above this mean were 0.98 and 0.99 respectively. The reported mean bias ranged 0.38–0.47 bpm (95% LoA: forearm 6.14, -5.38 bpm; upper arm 6.07, -5.13 bpm; temple 6.09, -5.31 bpm), and 0.15–0.16 bpm (95% LoA: forearm 3.99, -3.69 bpm; upper arm 3.90, -3.58 bpm; temple 4.06, -3.76 bpm) respectively. During different exercise intensities, the intraclass correlation ranged 0.95–0.99 for the three sensor locations. During the entire protocol, the estimated mean bias was in the range -0.15–0.55 bpm, 0.01–0.53 bpm and -0.37–0.48 bpm, for the forearm, upper arm and temple locations respectively. The corresponding upper limits of 95% LoA were 3.22–7.03 bpm, 3.25–6.82 bpm and 3.18–7.04 bpm while the lower limits of 95% LoA were -6.36–(-2.35) bpm, -6.46–(-2.30) bpm and -7.42–(-2.41) bpm. CONCLUSION: Polar OH1 demonstrates high level of agreement with the criterion measure ECG HR, thus can be used as a valid measure of HR in lab and field settings during moderate and high intensity physical activities.