Cargando…

Induced pluripotent stem cell‐conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β‐catenin pathway

Induced pluripotent stem cell‐derived conditioned medium (iPS‐CM) could improve cell viability in many types of cells and may be a better alternative for the treatment of myocardial infarction. This study aimed to examine the influence of iPS‐CM on anti‐apoptosis and the proliferation of H9C2 cardio...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Xiaoling, Gu, Xiaohong, Hareshwaree, Sohun, Rong, Xing, Li, Lei, Chu, Maoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533467/
https://www.ncbi.nlm.nih.gov/pubmed/30957422
http://dx.doi.org/10.1111/jcmm.14327
Descripción
Sumario:Induced pluripotent stem cell‐derived conditioned medium (iPS‐CM) could improve cell viability in many types of cells and may be a better alternative for the treatment of myocardial infarction. This study aimed to examine the influence of iPS‐CM on anti‐apoptosis and the proliferation of H9C2 cardiomyocytes and investigate the underlying mechanisms. H9C2 cardiomyocytes were exposed to 200 μmol/L hydrogen peroxide (H(2)O(2)) for 24 hours with or without pre‐treatment with iPS‐CM. The ratio of apoptotic cells, the loss of mitochondrial membrane potential (△Ψm) and the levels of intracellular reactive oxygen species were analysed by flow cytometric analysis. The expression levels of BCL‐2 and BAX proteins were analysed by Western blot. Cell proliferation was assessed using cell cycle and EdU staining assays. To study cell senescence, senescence‐associated β‐galactosidase (SA‐β‐gal) staining was conducted. The levels of malondialdehyde, superoxide dismutase and glutathione were also quantified using commercially available enzymatic kits. The results showed that iPS‐CM containing basic fibroblast growth factor significantly reduced H(2)O(2)‐induced H9C2 cardiomyocyte apoptosis by activating the autophagy flux pathway, promoted cardiomyocyte proliferation by up‐regulating the Wnt/β‐catenin pathway and inhibited oxidative stress and cell senescence. In conclusion, iPS‐CM effectively enhanced the cell viability of H9C2 cardiomyocytes and could potentially be used to inhibit cardiomyocytes apoptosis to treat myocardial infarction in the future.