Cargando…

A Nutraceutical Strategy to Slowing Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa

Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by progressive degeneration of the visual cells and abnormalities in retinal pigment epithelium, the vision is lost slowly, and the final outcome is total blindness. RP primarily affects rods, but cones can also be affected as...

Descripción completa

Detalles Bibliográficos
Autores principales: Piano, Ilaria, D’Antongiovanni, Vanessa, Testai, Lara, Calderone, Vincenzo, Gargini, Claudia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533548/
https://www.ncbi.nlm.nih.gov/pubmed/31156364
http://dx.doi.org/10.3389/fnins.2019.00461
Descripción
Sumario:Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by progressive degeneration of the visual cells and abnormalities in retinal pigment epithelium, the vision is lost slowly, and the final outcome is total blindness. RP primarily affects rods, but cones can also be affected as a secondary effect. Photoreceptor cell death is usually triggered by apoptosis, however the molecular mechanisms linking the rod degeneration to the secondary cone death are poorly understood. Possible causes of the secondary cone death are oxidative stress and/ or the release of toxic factors from dying rods. The aim of this study is to analyze the effect of nutraceutical molecules with antioxidant properties, on the progression of the disease in an established animal model of RP, and rd10 mice. We show that chronic treatment per os with a flavanone (naringenin) or a flavonol (quercetin) present in citrus fruits, grapes and apples, preserves retinal morphology, and ameliorates functionality. These actions are associated with a significant reduction of stress-oxidative markers, such as the detoxifying enzymes Sod1 and Sod2. In addition, naringenin and quercetin treatment reduces the levels of acrolein staining associated with a reduction of ROS in the cellular environment. The study demonstrates the beneficial effects of naringenin and quercetin, two molecules that possess antioxidant properties, limiting neurodegeneration, and thus preventing cone damage.