Cargando…

Nonfocal transient neurological attacks in patients with carotid artery occlusion

INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are episodes with atypical, nonlocalizing cerebral symptoms. We examined the prevalence of nonfocal TNAs, in patients with and without carotid artery occlusion (CAO). METHODS: We included 67 patients with CAO and 62 patients without CAO. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Oudeman, Eline A, Volkers, Eline J, Greving, Jacoba P, Klijn, Catharina JM, Algra, Ale, Kappelle, L.Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533861/
https://www.ncbi.nlm.nih.gov/pubmed/31165094
http://dx.doi.org/10.1177/2396987318818779
Descripción
Sumario:INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are episodes with atypical, nonlocalizing cerebral symptoms. We examined the prevalence of nonfocal TNAs, in patients with and without carotid artery occlusion (CAO). METHODS: We included 67 patients with CAO and 62 patients without CAO. In both groups, patients had a history of transient ischemic attack (TIA) or nondisabling ischemic stroke in the anterior circulation that had occurred >6 months before inclusion. Patients without CAO did not have ipsilateral or contralateral carotid artery stenosis of ≥50%. All patients were interviewed with a standardized questionnaire on the occurrence of nonfocal TNA symptoms during the preceding six months. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for the occurrence of ≥1 and ≥2 different nonfocal TNAs after adjustments for age, sex, systolic blood pressure and time interval between most recent TIA or ischemic stroke and administration of the questionnaire. RESULTS: Forty-three of all patients (33%) had had one or more nonfocal TNAs in the preceding six months. Nonrotatory dizziness (24%) was reported most often. The prevalence of ≥1 nonfocal TNAs was not significantly different between patients with and without CAO (39% vs. 27%; adjusted RR 1.47, 95% CI 0.83–2.61), but the prevalence of ≥2 or more different nonfocal TNAs was higher in patients with CAO (16% vs. 3%; adjusted RR 4.77, 95% CI 1.20–18.98). In patients with CAO who also had a contralateral carotid or vertebral artery steno-occlusion, nonfocal TNAs occurred more often than in patients without any carotid or vertebral artery steno-occlusion (46% vs. 27%; adjusted RR 2.22, 95% CI 1.08–4.60 for ≥1 and 21% vs. 3%; adjusted RR 8.27, 95% CI 1.83–37.32 for ≥2 nonfocal TNAs). CONCLUSIONS: Patients with CAO more often experienced multiple nonfocal TNAs than patients without CAO.