Cargando…

Enhanced Self-Efficacy and Behavioral Changes Among Patients With Diabetes: Cloud-Based Mobile Health Platform and Mobile App Service

BACKGROUND: The prevalence of chronic disease is increasing rapidly. Health promotion models have shifted toward patient-centered care and self-efficacy. Devices and mobile app in the Internet of Things (IoT) have become critical self-management tools for collecting and analyzing personal data to im...

Descripción completa

Detalles Bibliográficos
Autores principales: Chao, Dyna YP, Lin, Tom MY, Ma, Wen-Ya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534048/
https://www.ncbi.nlm.nih.gov/pubmed/31094324
http://dx.doi.org/10.2196/11017
Descripción
Sumario:BACKGROUND: The prevalence of chronic disease is increasing rapidly. Health promotion models have shifted toward patient-centered care and self-efficacy. Devices and mobile app in the Internet of Things (IoT) have become critical self-management tools for collecting and analyzing personal data to improve individual health outcomes. However, the precise effects of Web-based interventions on self-efficacy and the related motivation factors behind individuals’ behavioral changes have not been determined. OBJECTIVE: The objective of this study was to gain insight into patients' self-efficacy with newly diagnosed diabetes (type 2 diabetes mellitus) and analyze the association of patient-centered health promotion behavior and to examine the implications of the results for IoT and mobile health mobile app features. METHODS: The study used data from the electronic health database (n=3128). An experimental design (n=121) and randomized controlled trials were employed to determine patient preferences in the health promotion program (n=62) and mobile self-management education (n=28). The transtheoretical model was used as a framework for observing self-management behavior for the improvement of individual health, and the theory of planned behavior was used to evaluate personal goals, execution, outcome, and personal preferences. A mobile app was used to determine individualized health promotion interventions and to apply these interventions to improve patients’ self-management and self-efficacy. RESULTS: Mobile questionnaires were administered for pre- and postintervention assessment through mobile app. A dynamic questionnaire allocation method was used to follow up and monitor patient behavioral changes in the subsequent 6 to 18 months. Participants at a high risk of problems related to blood pressure (systolic blood pressure ≥120 mm Hg) and body mass index (≥23 kg/m(2)) indicated high motivation to change and to achieve high scores in the self-care knowledge assessment (n=49, 95% CI −0.26% to −0.24%, P=.052). The associated clinical outcomes in the case group with the mobile-based intervention were slightly better than in the control group (glycated hemoglobin mean −1.25%, 95% CI 6.36 to 7.47, P=.002). In addition, 86% (42/49) of the participants improved their health knowledge through the mobile-based app and information and communications technology. The behavior-change compliance rate was higher among the women than among the men. In addition, the personal characteristics of steadiness and dominance corresponded with a higher compliance rate in the dietary and wellness intervention (83%, 81/98). Most participants (71%, 70/98) also increased their attention to healthy eating, being active, and monitoring their condition (30% 21/70, 21% 15/70, and 20% 14/70, respectively). CONCLUSIONS: The overall compliance rate was discovered to be higher after the mobile app–based health intervention. Various intervention strategies based on patient characteristics, health care–related word-of-mouth communication, and social media may be used to increase self-efficacy and improve clinical outcomes. Additional research should be conducted to determine the most influential factors and the most effective adherence management techniques.