Cargando…
A mid-infrared biaxial hyperbolic van der Waals crystal
Hyperbolic media have attracted much attention in the photonics community due to their ability to confine light to arbitrarily small volumes and their potential applications to super-resolution technologies. The two-dimensional counterparts of these media can be achieved with hyperbolic metasurfaces...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534390/ https://www.ncbi.nlm.nih.gov/pubmed/31139747 http://dx.doi.org/10.1126/sciadv.aav8690 |
_version_ | 1783421408691355648 |
---|---|
author | Zheng, Zebo Xu, Ningsheng Oscurato, Stefano L. Tamagnone, Michele Sun, Fengsheng Jiang, Yinzhu Ke, Yanlin Chen, Jianing Huang, Wuchao Wilson, William L. Ambrosio, Antonio Deng, Shaozhi Chen, Huanjun |
author_facet | Zheng, Zebo Xu, Ningsheng Oscurato, Stefano L. Tamagnone, Michele Sun, Fengsheng Jiang, Yinzhu Ke, Yanlin Chen, Jianing Huang, Wuchao Wilson, William L. Ambrosio, Antonio Deng, Shaozhi Chen, Huanjun |
author_sort | Zheng, Zebo |
collection | PubMed |
description | Hyperbolic media have attracted much attention in the photonics community due to their ability to confine light to arbitrarily small volumes and their potential applications to super-resolution technologies. The two-dimensional counterparts of these media can be achieved with hyperbolic metasurfaces that support in-plane hyperbolic guided modes upon nanopatterning, which, however, poses notable fabrication challenges and limits the achievable confinement. We show that thin flakes of a van der Waals crystal, α-MoO(3), can support naturally in-plane hyperbolic polariton guided modes at mid-infrared frequencies without the need for patterning. This is possible because α-MoO(3) is a biaxial hyperbolic crystal with three different Reststrahlen bands, each corresponding to a different crystalline axis. These findings can pave the way toward a new paradigm to manipulate and confine light in planar photonic devices. |
format | Online Article Text |
id | pubmed-6534390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65343902019-05-28 A mid-infrared biaxial hyperbolic van der Waals crystal Zheng, Zebo Xu, Ningsheng Oscurato, Stefano L. Tamagnone, Michele Sun, Fengsheng Jiang, Yinzhu Ke, Yanlin Chen, Jianing Huang, Wuchao Wilson, William L. Ambrosio, Antonio Deng, Shaozhi Chen, Huanjun Sci Adv Research Articles Hyperbolic media have attracted much attention in the photonics community due to their ability to confine light to arbitrarily small volumes and their potential applications to super-resolution technologies. The two-dimensional counterparts of these media can be achieved with hyperbolic metasurfaces that support in-plane hyperbolic guided modes upon nanopatterning, which, however, poses notable fabrication challenges and limits the achievable confinement. We show that thin flakes of a van der Waals crystal, α-MoO(3), can support naturally in-plane hyperbolic polariton guided modes at mid-infrared frequencies without the need for patterning. This is possible because α-MoO(3) is a biaxial hyperbolic crystal with three different Reststrahlen bands, each corresponding to a different crystalline axis. These findings can pave the way toward a new paradigm to manipulate and confine light in planar photonic devices. American Association for the Advancement of Science 2019-05-24 /pmc/articles/PMC6534390/ /pubmed/31139747 http://dx.doi.org/10.1126/sciadv.aav8690 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zheng, Zebo Xu, Ningsheng Oscurato, Stefano L. Tamagnone, Michele Sun, Fengsheng Jiang, Yinzhu Ke, Yanlin Chen, Jianing Huang, Wuchao Wilson, William L. Ambrosio, Antonio Deng, Shaozhi Chen, Huanjun A mid-infrared biaxial hyperbolic van der Waals crystal |
title | A mid-infrared biaxial hyperbolic van der Waals crystal |
title_full | A mid-infrared biaxial hyperbolic van der Waals crystal |
title_fullStr | A mid-infrared biaxial hyperbolic van der Waals crystal |
title_full_unstemmed | A mid-infrared biaxial hyperbolic van der Waals crystal |
title_short | A mid-infrared biaxial hyperbolic van der Waals crystal |
title_sort | mid-infrared biaxial hyperbolic van der waals crystal |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534390/ https://www.ncbi.nlm.nih.gov/pubmed/31139747 http://dx.doi.org/10.1126/sciadv.aav8690 |
work_keys_str_mv | AT zhengzebo amidinfraredbiaxialhyperbolicvanderwaalscrystal AT xuningsheng amidinfraredbiaxialhyperbolicvanderwaalscrystal AT oscuratostefanol amidinfraredbiaxialhyperbolicvanderwaalscrystal AT tamagnonemichele amidinfraredbiaxialhyperbolicvanderwaalscrystal AT sunfengsheng amidinfraredbiaxialhyperbolicvanderwaalscrystal AT jiangyinzhu amidinfraredbiaxialhyperbolicvanderwaalscrystal AT keyanlin amidinfraredbiaxialhyperbolicvanderwaalscrystal AT chenjianing amidinfraredbiaxialhyperbolicvanderwaalscrystal AT huangwuchao amidinfraredbiaxialhyperbolicvanderwaalscrystal AT wilsonwilliaml amidinfraredbiaxialhyperbolicvanderwaalscrystal AT ambrosioantonio amidinfraredbiaxialhyperbolicvanderwaalscrystal AT dengshaozhi amidinfraredbiaxialhyperbolicvanderwaalscrystal AT chenhuanjun amidinfraredbiaxialhyperbolicvanderwaalscrystal AT zhengzebo midinfraredbiaxialhyperbolicvanderwaalscrystal AT xuningsheng midinfraredbiaxialhyperbolicvanderwaalscrystal AT oscuratostefanol midinfraredbiaxialhyperbolicvanderwaalscrystal AT tamagnonemichele midinfraredbiaxialhyperbolicvanderwaalscrystal AT sunfengsheng midinfraredbiaxialhyperbolicvanderwaalscrystal AT jiangyinzhu midinfraredbiaxialhyperbolicvanderwaalscrystal AT keyanlin midinfraredbiaxialhyperbolicvanderwaalscrystal AT chenjianing midinfraredbiaxialhyperbolicvanderwaalscrystal AT huangwuchao midinfraredbiaxialhyperbolicvanderwaalscrystal AT wilsonwilliaml midinfraredbiaxialhyperbolicvanderwaalscrystal AT ambrosioantonio midinfraredbiaxialhyperbolicvanderwaalscrystal AT dengshaozhi midinfraredbiaxialhyperbolicvanderwaalscrystal AT chenhuanjun midinfraredbiaxialhyperbolicvanderwaalscrystal |