Cargando…

Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications

Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density an...

Descripción completa

Detalles Bibliográficos
Autores principales: Rusimova, Kristina R., Slavov, Dimitar, Pradaux-Caggiano, Fabienne, Collins, Joel T., Gordeev, Sergey N., Carbery, David R., Wadsworth, William J., Mosley, Peter J., Valev, Ventsislav K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534619/
https://www.ncbi.nlm.nih.gov/pubmed/31127090
http://dx.doi.org/10.1038/s41467-019-10158-4
_version_ 1783421451271929856
author Rusimova, Kristina R.
Slavov, Dimitar
Pradaux-Caggiano, Fabienne
Collins, Joel T.
Gordeev, Sergey N.
Carbery, David R.
Wadsworth, William J.
Mosley, Peter J.
Valev, Ventsislav K.
author_facet Rusimova, Kristina R.
Slavov, Dimitar
Pradaux-Caggiano, Fabienne
Collins, Joel T.
Gordeev, Sergey N.
Carbery, David R.
Wadsworth, William J.
Mosley, Peter J.
Valev, Ventsislav K.
author_sort Rusimova, Kristina R.
collection PubMed
description Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption – both time-consuming techniques. Here, we use plasmonic nanoparticles to convert light into localized thermal energy and to achieve optical depths in warm vapors, corresponding to a ~16 times increase in vapor pressure in less than 20 ms, with possible reload times much shorter than an hour. Our results enable robust and compact light-matter devices, such as efficient quantum memories and photon-photon logic gates, in which strong optical nonlinearities are crucial.
format Online
Article
Text
id pubmed-6534619
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65346192019-05-28 Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications Rusimova, Kristina R. Slavov, Dimitar Pradaux-Caggiano, Fabienne Collins, Joel T. Gordeev, Sergey N. Carbery, David R. Wadsworth, William J. Mosley, Peter J. Valev, Ventsislav K. Nat Commun Article Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption – both time-consuming techniques. Here, we use plasmonic nanoparticles to convert light into localized thermal energy and to achieve optical depths in warm vapors, corresponding to a ~16 times increase in vapor pressure in less than 20 ms, with possible reload times much shorter than an hour. Our results enable robust and compact light-matter devices, such as efficient quantum memories and photon-photon logic gates, in which strong optical nonlinearities are crucial. Nature Publishing Group UK 2019-05-24 /pmc/articles/PMC6534619/ /pubmed/31127090 http://dx.doi.org/10.1038/s41467-019-10158-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Rusimova, Kristina R.
Slavov, Dimitar
Pradaux-Caggiano, Fabienne
Collins, Joel T.
Gordeev, Sergey N.
Carbery, David R.
Wadsworth, William J.
Mosley, Peter J.
Valev, Ventsislav K.
Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title_full Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title_fullStr Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title_full_unstemmed Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title_short Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
title_sort atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534619/
https://www.ncbi.nlm.nih.gov/pubmed/31127090
http://dx.doi.org/10.1038/s41467-019-10158-4
work_keys_str_mv AT rusimovakristinar atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT slavovdimitar atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT pradauxcaggianofabienne atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT collinsjoelt atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT gordeevsergeyn atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT carberydavidr atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT wadsworthwilliamj atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT mosleypeterj atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications
AT valevventsislavk atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications