Cargando…
Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications
Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534619/ https://www.ncbi.nlm.nih.gov/pubmed/31127090 http://dx.doi.org/10.1038/s41467-019-10158-4 |
_version_ | 1783421451271929856 |
---|---|
author | Rusimova, Kristina R. Slavov, Dimitar Pradaux-Caggiano, Fabienne Collins, Joel T. Gordeev, Sergey N. Carbery, David R. Wadsworth, William J. Mosley, Peter J. Valev, Ventsislav K. |
author_facet | Rusimova, Kristina R. Slavov, Dimitar Pradaux-Caggiano, Fabienne Collins, Joel T. Gordeev, Sergey N. Carbery, David R. Wadsworth, William J. Mosley, Peter J. Valev, Ventsislav K. |
author_sort | Rusimova, Kristina R. |
collection | PubMed |
description | Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption – both time-consuming techniques. Here, we use plasmonic nanoparticles to convert light into localized thermal energy and to achieve optical depths in warm vapors, corresponding to a ~16 times increase in vapor pressure in less than 20 ms, with possible reload times much shorter than an hour. Our results enable robust and compact light-matter devices, such as efficient quantum memories and photon-photon logic gates, in which strong optical nonlinearities are crucial. |
format | Online Article Text |
id | pubmed-6534619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65346192019-05-28 Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications Rusimova, Kristina R. Slavov, Dimitar Pradaux-Caggiano, Fabienne Collins, Joel T. Gordeev, Sergey N. Carbery, David R. Wadsworth, William J. Mosley, Peter J. Valev, Ventsislav K. Nat Commun Article Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption – both time-consuming techniques. Here, we use plasmonic nanoparticles to convert light into localized thermal energy and to achieve optical depths in warm vapors, corresponding to a ~16 times increase in vapor pressure in less than 20 ms, with possible reload times much shorter than an hour. Our results enable robust and compact light-matter devices, such as efficient quantum memories and photon-photon logic gates, in which strong optical nonlinearities are crucial. Nature Publishing Group UK 2019-05-24 /pmc/articles/PMC6534619/ /pubmed/31127090 http://dx.doi.org/10.1038/s41467-019-10158-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Rusimova, Kristina R. Slavov, Dimitar Pradaux-Caggiano, Fabienne Collins, Joel T. Gordeev, Sergey N. Carbery, David R. Wadsworth, William J. Mosley, Peter J. Valev, Ventsislav K. Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title | Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title_full | Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title_fullStr | Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title_full_unstemmed | Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title_short | Atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
title_sort | atomic dispensers for thermoplasmonic control of alkali vapor pressure in quantum optical applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534619/ https://www.ncbi.nlm.nih.gov/pubmed/31127090 http://dx.doi.org/10.1038/s41467-019-10158-4 |
work_keys_str_mv | AT rusimovakristinar atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT slavovdimitar atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT pradauxcaggianofabienne atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT collinsjoelt atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT gordeevsergeyn atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT carberydavidr atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT wadsworthwilliamj atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT mosleypeterj atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications AT valevventsislavk atomicdispensersforthermoplasmoniccontrolofalkalivaporpressureinquantumopticalapplications |