Cargando…

An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A(2A) receptor

Over the last 5 years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xuhan, Ye, Kai, van Vlijmen, Herman W. T., IJzerman, Adriaan P., van Westen, Gerard J. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534880/
https://www.ncbi.nlm.nih.gov/pubmed/31127405
http://dx.doi.org/10.1186/s13321-019-0355-6
Descripción
Sumario:Over the last 5 years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, ligands generated by current methods have so far provided relatively low diversity and do not fully cover the whole chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover de novo drug-like molecules. DrugEx is an RNN model (generator) trained through reinforcement learning which was integrated with a special exploration strategy. As a case study we applied our method to design ligands against the adenosine A(2A) receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforcement learning without any further data. We then compared the performance of our method with two previously published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed, and predicted to be active, had a larger chemical diversity and better covered the chemical space of known ligands compared to the state-of-the-art. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13321-019-0355-6) contains supplementary material, which is available to authorized users.