Cargando…
An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A(2A) receptor
Over the last 5 years deep learning has progressed tremendously in both image recognition and natural language processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) have been shown to be an effective method to generate novel chemica...
Autores principales: | Liu, Xuhan, Ye, Kai, van Vlijmen, Herman W. T., IJzerman, Adriaan P., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534880/ https://www.ncbi.nlm.nih.gov/pubmed/31127405 http://dx.doi.org/10.1186/s13321-019-0355-6 |
Ejemplares similares
-
DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology
por: Liu, Xuhan, et al.
Publicado: (2021) -
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning
por: Liu, Xuhan, et al.
Publicado: (2023) -
Quantitative prediction of selectivity between the A(1) and A(2A) adenosine receptors
por: Burggraaff, Lindsey, et al.
Publicado: (2020) -
In search of novel ligands using a structure-based approach: a case study on the adenosine A(2A) receptor
por: Lenselink, Eelke B., et al.
Publicado: (2016) -
Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set
por: Lenselink, Eelke B., et al.
Publicado: (2017)