Cargando…

Dimorphic sperm formation by Sex-lethal

Sex is determined by diverse mechanisms and master sex-determination genes are highly divergent, even among closely related species. Therefore, it is possible that homologs of master sex-determination genes might have alternative functions in different species. Herein, we focused on Sex-lethal (Sxl)...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakai, Hiroki, Oshima, Hiroyuki, Yuri, Kodai, Gotoh, Hiroki, Daimon, Takaaki, Yaginuma, Toshinobu, Sahara, Ken, Niimi, Teruyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535010/
https://www.ncbi.nlm.nih.gov/pubmed/31036645
http://dx.doi.org/10.1073/pnas.1820101116
Descripción
Sumario:Sex is determined by diverse mechanisms and master sex-determination genes are highly divergent, even among closely related species. Therefore, it is possible that homologs of master sex-determination genes might have alternative functions in different species. Herein, we focused on Sex-lethal (Sxl), which is the master sex-determination gene in Drosophila melanogaster and is necessary for female germline development. It has been widely shown that the sex-determination function of Sxl in Drosophilidae species is not conserved in other insects of different orders. We investigated the function of Sxl in the lepidopteran insect Bombyx mori. In lepidopteran insects (moths and butterflies), spermatogenesis results in two different types of sperm: nucleated fertile eupyrene sperm and anucleate nonfertile parasperm, also known as apyrene sperm. Genetic analyses using Sxl mutants revealed that the gene is indispensable for proper morphogenesis of apyrene sperm. Similarly, our analyses using Sxl mutants clearly demonstrate that apyrene sperm are necessary for eupyrene sperm migration from the bursa copulatrix to the spermatheca. Therefore, apyrene sperm is necessary for successful fertilization of eupyrene sperm in B. mori. Although Sxl is essential for oogenesis in D. melanogaster, it also plays important roles in spermatogenesis in B. mori. Therefore, the ancestral function of Sxl might be related to germline development.