Cargando…
FunPred 3.0: improved protein function prediction using protein interaction network
Proteins are the most versatile macromolecules in living systems and perform crucial biological functions. In the advent of the post-genomic era, the next generation sequencing is done routinely at the population scale for a variety of species. The challenging problem is to massively determine the f...
Autores principales: | Saha, Sovan, Chatterjee, Piyali, Basu, Subhadip, Nasipuri, Mita, Plewczynski, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535044/ https://www.ncbi.nlm.nih.gov/pubmed/31198622 http://dx.doi.org/10.7717/peerj.6830 |
Ejemplares similares
-
FunPred-1: Protein function prediction from a protein interaction network using neighborhood analysis
por: Saha, Sovan, et al.
Publicado: (2014) -
Detection of spreader nodes in human-SARS-CoV protein-protein interaction network
por: Saha, Sovan, et al.
Publicado: (2021) -
PFP-GO: Integrating protein sequence, domain and protein-protein interaction information for protein function prediction using ranked GO terms
por: Sengupta, Kaustav, et al.
Publicado: (2022) -
PPI_SVM: Prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables
por: Chatterjee, Piyali, et al.
Publicado: (2011) -
ML-DTD: Machine Learning-Based Drug Target Discovery for the Potential Treatment of COVID-19
por: Saha, Sovan, et al.
Publicado: (2022)