Cargando…
A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer
Background: Recently, increasing evidence has uncovered the roles of mRNA-miRNA-lncRNA network in multiple human cancers. However, a systematic mRNA-miRNA-lncRNA network linked to pancreatic cancer prognosis is still absent. Methods: Differentially expressed genes (DEGs) were first identified by min...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535056/ https://www.ncbi.nlm.nih.gov/pubmed/31061236 http://dx.doi.org/10.18632/aging.101933 |
_version_ | 1783421534644207616 |
---|---|
author | Wang, Wenlong Lou, Weiyang Ding, Bisha Yang, Beng Lu, Hongda Kong, Qingzhi Fan, Weimin |
author_facet | Wang, Wenlong Lou, Weiyang Ding, Bisha Yang, Beng Lu, Hongda Kong, Qingzhi Fan, Weimin |
author_sort | Wang, Wenlong |
collection | PubMed |
description | Background: Recently, increasing evidence has uncovered the roles of mRNA-miRNA-lncRNA network in multiple human cancers. However, a systematic mRNA-miRNA-lncRNA network linked to pancreatic cancer prognosis is still absent. Methods: Differentially expressed genes (DEGs) were first identified by mining GSE16515 and GSE15471 datasets. DAVID database was utilized to conduct functional enrichment analysis. Protein-protein interaction (PPI) network was built using STRING database, and hub genes were identified by Cytoscape plug-in CytoHubba. Upstream miRNAs and lncRNAs of mRNAs were predicted by miRTarBase and miRNet, respectively. Expression, survival and correlation analysis for genes, miRNAs and lncRNAs were performed via GEPIA, Kaplan-Meier plotter and starBase. Results: 734 and 180 upregulated and downregulated significant DEGs were identified, respectively. Functional enrichment analysis revealed that they were significantly enriched in focal adhesion, pathways in cancer and metabolic pathways. According to node degree, hub genes in the PPI networks were screened, such as TGFB1 and ALB. Among the top 20 hub genes, 7 upregulated genes and 2 downregulated hub genes had significant prognostic values in pancreatic cancer. 33 miRNAs were predicted to target the 9 key genes. But only high expression of 8 miRNAs indicated favorable prognosis in pancreatic cancer. Then, 90 lncRNAs were predicted to potentially bind to the 8 miRNAs. SCAMP1, HCP5, MAL2 and LINC00511 were finally identified as key lncRNAs. By combination of results from expression, survival and correlation analysis demonstrated that MMP9/ITGB1-miR-29b-3p-HCP5 competing endogenous RNA (ceRNA) sub-network was linked to prognosis of pancreatic cancer. Conclusions: In a word, we established a novel mRNA-miRNA-lncRNA sub-network, among which each RNA may be utilized as a prognostic biomarker of pancreatic cancer. |
format | Online Article Text |
id | pubmed-6535056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-65350562019-06-04 A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer Wang, Wenlong Lou, Weiyang Ding, Bisha Yang, Beng Lu, Hongda Kong, Qingzhi Fan, Weimin Aging (Albany NY) Research Paper Background: Recently, increasing evidence has uncovered the roles of mRNA-miRNA-lncRNA network in multiple human cancers. However, a systematic mRNA-miRNA-lncRNA network linked to pancreatic cancer prognosis is still absent. Methods: Differentially expressed genes (DEGs) were first identified by mining GSE16515 and GSE15471 datasets. DAVID database was utilized to conduct functional enrichment analysis. Protein-protein interaction (PPI) network was built using STRING database, and hub genes were identified by Cytoscape plug-in CytoHubba. Upstream miRNAs and lncRNAs of mRNAs were predicted by miRTarBase and miRNet, respectively. Expression, survival and correlation analysis for genes, miRNAs and lncRNAs were performed via GEPIA, Kaplan-Meier plotter and starBase. Results: 734 and 180 upregulated and downregulated significant DEGs were identified, respectively. Functional enrichment analysis revealed that they were significantly enriched in focal adhesion, pathways in cancer and metabolic pathways. According to node degree, hub genes in the PPI networks were screened, such as TGFB1 and ALB. Among the top 20 hub genes, 7 upregulated genes and 2 downregulated hub genes had significant prognostic values in pancreatic cancer. 33 miRNAs were predicted to target the 9 key genes. But only high expression of 8 miRNAs indicated favorable prognosis in pancreatic cancer. Then, 90 lncRNAs were predicted to potentially bind to the 8 miRNAs. SCAMP1, HCP5, MAL2 and LINC00511 were finally identified as key lncRNAs. By combination of results from expression, survival and correlation analysis demonstrated that MMP9/ITGB1-miR-29b-3p-HCP5 competing endogenous RNA (ceRNA) sub-network was linked to prognosis of pancreatic cancer. Conclusions: In a word, we established a novel mRNA-miRNA-lncRNA sub-network, among which each RNA may be utilized as a prognostic biomarker of pancreatic cancer. Impact Journals 2019-05-06 /pmc/articles/PMC6535056/ /pubmed/31061236 http://dx.doi.org/10.18632/aging.101933 Text en Copyright © 2019 Wang et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Wang, Wenlong Lou, Weiyang Ding, Bisha Yang, Beng Lu, Hongda Kong, Qingzhi Fan, Weimin A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title | A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title_full | A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title_fullStr | A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title_full_unstemmed | A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title_short | A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer |
title_sort | novel mrna-mirna-lncrna competing endogenous rna triple sub-network associated with prognosis of pancreatic cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535056/ https://www.ncbi.nlm.nih.gov/pubmed/31061236 http://dx.doi.org/10.18632/aging.101933 |
work_keys_str_mv | AT wangwenlong anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT louweiyang anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT dingbisha anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT yangbeng anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT luhongda anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT kongqingzhi anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT fanweimin anovelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT wangwenlong novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT louweiyang novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT dingbisha novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT yangbeng novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT luhongda novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT kongqingzhi novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer AT fanweimin novelmrnamirnalncrnacompetingendogenousrnatriplesubnetworkassociatedwithprognosisofpancreaticcancer |