Cargando…
A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
[Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language process...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535764/ https://www.ncbi.nlm.nih.gov/pubmed/31139725 http://dx.doi.org/10.1021/acscentsci.9b00193 |
_version_ | 1783421626207961088 |
---|---|
author | Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z. H. Román-Leshkov, Yuriy Moliner, Manuel Corma, Avelino Olivetti, Elsa |
author_facet | Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z. H. Román-Leshkov, Yuriy Moliner, Manuel Corma, Avelino Olivetti, Elsa |
author_sort | Jensen, Zach |
collection | PubMed |
description | [Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite’s framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å(3), and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies. |
format | Online Article Text |
id | pubmed-6535764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65357642019-05-28 A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z. H. Román-Leshkov, Yuriy Moliner, Manuel Corma, Avelino Olivetti, Elsa ACS Cent Sci [Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite’s framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å(3), and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies. American Chemical Society 2019-04-19 2019-05-22 /pmc/articles/PMC6535764/ /pubmed/31139725 http://dx.doi.org/10.1021/acscentsci.9b00193 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z. H. Román-Leshkov, Yuriy Moliner, Manuel Corma, Avelino Olivetti, Elsa A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction |
title | A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction |
title_full | A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction |
title_fullStr | A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction |
title_full_unstemmed | A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction |
title_short | A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction |
title_sort | machine learning approach to zeolite synthesis enabled
by automatic literature data extraction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535764/ https://www.ncbi.nlm.nih.gov/pubmed/31139725 http://dx.doi.org/10.1021/acscentsci.9b00193 |
work_keys_str_mv | AT jensenzach amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT kimedward amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT kwonsoonhyoung amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT ganiterryzh amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT romanleshkovyuriy amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT molinermanuel amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT cormaavelino amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT olivettielsa amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT jensenzach machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT kimedward machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT kwonsoonhyoung machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT ganiterryzh machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT romanleshkovyuriy machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT molinermanuel machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT cormaavelino machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction AT olivettielsa machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction |