Cargando…

A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction

[Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language process...

Descripción completa

Detalles Bibliográficos
Autores principales: Jensen, Zach, Kim, Edward, Kwon, Soonhyoung, Gani, Terry Z. H., Román-Leshkov, Yuriy, Moliner, Manuel, Corma, Avelino, Olivetti, Elsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535764/
https://www.ncbi.nlm.nih.gov/pubmed/31139725
http://dx.doi.org/10.1021/acscentsci.9b00193
_version_ 1783421626207961088
author Jensen, Zach
Kim, Edward
Kwon, Soonhyoung
Gani, Terry Z. H.
Román-Leshkov, Yuriy
Moliner, Manuel
Corma, Avelino
Olivetti, Elsa
author_facet Jensen, Zach
Kim, Edward
Kwon, Soonhyoung
Gani, Terry Z. H.
Román-Leshkov, Yuriy
Moliner, Manuel
Corma, Avelino
Olivetti, Elsa
author_sort Jensen, Zach
collection PubMed
description [Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite’s framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å(3), and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies.
format Online
Article
Text
id pubmed-6535764
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65357642019-05-28 A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction Jensen, Zach Kim, Edward Kwon, Soonhyoung Gani, Terry Z. H. Román-Leshkov, Yuriy Moliner, Manuel Corma, Avelino Olivetti, Elsa ACS Cent Sci [Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite’s framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å(3), and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies. American Chemical Society 2019-04-19 2019-05-22 /pmc/articles/PMC6535764/ /pubmed/31139725 http://dx.doi.org/10.1021/acscentsci.9b00193 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Jensen, Zach
Kim, Edward
Kwon, Soonhyoung
Gani, Terry Z. H.
Román-Leshkov, Yuriy
Moliner, Manuel
Corma, Avelino
Olivetti, Elsa
A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title_full A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title_fullStr A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title_full_unstemmed A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title_short A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
title_sort machine learning approach to zeolite synthesis enabled by automatic literature data extraction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535764/
https://www.ncbi.nlm.nih.gov/pubmed/31139725
http://dx.doi.org/10.1021/acscentsci.9b00193
work_keys_str_mv AT jensenzach amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT kimedward amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT kwonsoonhyoung amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT ganiterryzh amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT romanleshkovyuriy amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT molinermanuel amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT cormaavelino amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT olivettielsa amachinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT jensenzach machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT kimedward machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT kwonsoonhyoung machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT ganiterryzh machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT romanleshkovyuriy machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT molinermanuel machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT cormaavelino machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction
AT olivettielsa machinelearningapproachtozeolitesynthesisenabledbyautomaticliteraturedataextraction