Cargando…
A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction
[Image: see text] Zeolites are porous, aluminosilicate materials with many industrial and “green” applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language process...
Autores principales: | Jensen, Zach, Kim, Edward, Kwon, Soonhyoung, Gani, Terry Z. H., Román-Leshkov, Yuriy, Moliner, Manuel, Corma, Avelino, Olivetti, Elsa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535764/ https://www.ncbi.nlm.nih.gov/pubmed/31139725 http://dx.doi.org/10.1021/acscentsci.9b00193 |
Ejemplares similares
-
Discovering Relationships between OSDAs and Zeolites
through Data Mining and Generative Neural Networks
por: Jensen, Zach, et al.
Publicado: (2021) -
Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds
por: Rodríguez-Fernández, Aída, et al.
Publicado: (2020) -
Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structure‐Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx
por: Bello‐Jurado, Estefanía, et al.
Publicado: (2022) -
Conceptual similarities between zeolites and artificial enzymes
por: Gallego, Eva M., et al.
Publicado: (2019) -
Design and Synthesis of the Active Site Environment
in Zeolite Catalysts for Selectively Manipulating Mechanistic Pathways
por: Li, Chengeng, et al.
Publicado: (2021)