Cargando…
Machine Learning of Coarse-Grained Molecular Dynamics Force Fields
[Image: see text] Atomistic or ab initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expensive simulations is the definiti...
Autores principales: | Wang, Jiang, Olsson, Simon, Wehmeyer, Christoph, Pérez, Adrià, Charron, Nicholas E., de Fabritiis, Gianni, Noé, Frank, Clementi, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535777/ https://www.ncbi.nlm.nih.gov/pubmed/31139712 http://dx.doi.org/10.1021/acscentsci.8b00913 |
Ejemplares similares
-
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Slicing and Dicing: Optimal Coarse-Grained Representation
to Preserve Molecular Kinetics
por: Yang, Wangfei, et al.
Publicado: (2023) -
Martini 3 Coarse-Grained
Force Field for Carbohydrates
por: Grünewald, Fabian, et al.
Publicado: (2022) -
Polarizable Water Model for the Coarse-Grained MARTINI Force Field
por: Yesylevskyy, Semen O., et al.
Publicado: (2010) -
The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes
por: Orsi, Mario, et al.
Publicado: (2011)