Cargando…

A New Magnetic Topological Quantum Material Candidate by Design

[Image: see text] Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn(...

Descripción completa

Detalles Bibliográficos
Autores principales: Gui, Xin, Pletikosic, Ivo, Cao, Huibo, Tien, Hung-Ju, Xu, Xitong, Zhong, Ruidan, Wang, Guangqiang, Chang, Tay-Rong, Jia, Shuang, Valla, Tonica, Xie, Weiwei, Cava, Robert J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535778/
https://www.ncbi.nlm.nih.gov/pubmed/31139726
http://dx.doi.org/10.1021/acscentsci.9b00202
_version_ 1783421630106566656
author Gui, Xin
Pletikosic, Ivo
Cao, Huibo
Tien, Hung-Ju
Xu, Xitong
Zhong, Ruidan
Wang, Guangqiang
Chang, Tay-Rong
Jia, Shuang
Valla, Tonica
Xie, Weiwei
Cava, Robert J.
author_facet Gui, Xin
Pletikosic, Ivo
Cao, Huibo
Tien, Hung-Ju
Xu, Xitong
Zhong, Ruidan
Wang, Guangqiang
Chang, Tay-Rong
Jia, Shuang
Valla, Tonica
Xie, Weiwei
Cava, Robert J.
author_sort Gui, Xin
collection PubMed
description [Image: see text] Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn(2)P(2), a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn(2)P(2) has a layered, Bi(2)Te(3)-type structure. Ferromagnetic interactions dominate the Curie–Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers—this magnetic state surrounds the Sn–P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn(2)P(2) might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by angle-resolved photoelectron spectroscopy (ARPES) measurements.
format Online
Article
Text
id pubmed-6535778
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65357782019-05-28 A New Magnetic Topological Quantum Material Candidate by Design Gui, Xin Pletikosic, Ivo Cao, Huibo Tien, Hung-Ju Xu, Xitong Zhong, Ruidan Wang, Guangqiang Chang, Tay-Rong Jia, Shuang Valla, Tonica Xie, Weiwei Cava, Robert J. ACS Cent Sci [Image: see text] Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn(2)P(2), a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn(2)P(2) has a layered, Bi(2)Te(3)-type structure. Ferromagnetic interactions dominate the Curie–Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers—this magnetic state surrounds the Sn–P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn(2)P(2) might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by angle-resolved photoelectron spectroscopy (ARPES) measurements. American Chemical Society 2019-04-19 2019-05-22 /pmc/articles/PMC6535778/ /pubmed/31139726 http://dx.doi.org/10.1021/acscentsci.9b00202 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Gui, Xin
Pletikosic, Ivo
Cao, Huibo
Tien, Hung-Ju
Xu, Xitong
Zhong, Ruidan
Wang, Guangqiang
Chang, Tay-Rong
Jia, Shuang
Valla, Tonica
Xie, Weiwei
Cava, Robert J.
A New Magnetic Topological Quantum Material Candidate by Design
title A New Magnetic Topological Quantum Material Candidate by Design
title_full A New Magnetic Topological Quantum Material Candidate by Design
title_fullStr A New Magnetic Topological Quantum Material Candidate by Design
title_full_unstemmed A New Magnetic Topological Quantum Material Candidate by Design
title_short A New Magnetic Topological Quantum Material Candidate by Design
title_sort new magnetic topological quantum material candidate by design
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535778/
https://www.ncbi.nlm.nih.gov/pubmed/31139726
http://dx.doi.org/10.1021/acscentsci.9b00202
work_keys_str_mv AT guixin anewmagnetictopologicalquantummaterialcandidatebydesign
AT pletikosicivo anewmagnetictopologicalquantummaterialcandidatebydesign
AT caohuibo anewmagnetictopologicalquantummaterialcandidatebydesign
AT tienhungju anewmagnetictopologicalquantummaterialcandidatebydesign
AT xuxitong anewmagnetictopologicalquantummaterialcandidatebydesign
AT zhongruidan anewmagnetictopologicalquantummaterialcandidatebydesign
AT wangguangqiang anewmagnetictopologicalquantummaterialcandidatebydesign
AT changtayrong anewmagnetictopologicalquantummaterialcandidatebydesign
AT jiashuang anewmagnetictopologicalquantummaterialcandidatebydesign
AT vallatonica anewmagnetictopologicalquantummaterialcandidatebydesign
AT xieweiwei anewmagnetictopologicalquantummaterialcandidatebydesign
AT cavarobertj anewmagnetictopologicalquantummaterialcandidatebydesign
AT guixin newmagnetictopologicalquantummaterialcandidatebydesign
AT pletikosicivo newmagnetictopologicalquantummaterialcandidatebydesign
AT caohuibo newmagnetictopologicalquantummaterialcandidatebydesign
AT tienhungju newmagnetictopologicalquantummaterialcandidatebydesign
AT xuxitong newmagnetictopologicalquantummaterialcandidatebydesign
AT zhongruidan newmagnetictopologicalquantummaterialcandidatebydesign
AT wangguangqiang newmagnetictopologicalquantummaterialcandidatebydesign
AT changtayrong newmagnetictopologicalquantummaterialcandidatebydesign
AT jiashuang newmagnetictopologicalquantummaterialcandidatebydesign
AT vallatonica newmagnetictopologicalquantummaterialcandidatebydesign
AT xieweiwei newmagnetictopologicalquantummaterialcandidatebydesign
AT cavarobertj newmagnetictopologicalquantummaterialcandidatebydesign