Cargando…
An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System
BACKGROUND: Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to remove task-independent electroencephalogram (EEG)...
Autores principales: | Feng, Jian Kui, Jin, Jing, Daly, Ian, Zhou, Jiale, Niu, Yugang, Wang, Xingyu, Cichocki, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535844/ https://www.ncbi.nlm.nih.gov/pubmed/31214255 http://dx.doi.org/10.1155/2019/8068357 |
Ejemplares similares
-
Variance characteristic preserving common spatial pattern for motor imagery BCI
por: Liang, Wei, et al.
Publicado: (2023) -
Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison
por: Martín-Clemente, Rubén, et al.
Publicado: (2018) -
Comparison of the ERP-Based BCI Performance Among Chromatic (RGB) Semitransparent Face Patterns
por: Li, Shurui, et al.
Publicado: (2020) -
BCI-Based Rehabilitation on the Stroke in Sequela Stage
por: Miao, Yangyang, et al.
Publicado: (2020) -
Optimizing the Face Paradigm of BCI System by Modified Mismatch Negative Paradigm
por: Zhou, Sijie, et al.
Publicado: (2016)