Cargando…

Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives

Although vitamin C (VC, L-ascorbic acid) has been widely used as a skin lightening agent for a long time, the mechanism by which it inhibits melanogenesis remains poorly understood. It is well-documented that the intramelanocytic pH is an important factor in regulating tyrosinase function and melano...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Fang, Su, Meng-Yun, Jiang, Shan, Luo, Long-Fei, Shi, Ying, Lei, Tie-Chi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535878/
https://www.ncbi.nlm.nih.gov/pubmed/31214276
http://dx.doi.org/10.1155/2019/2084805
_version_ 1783421656540119040
author Miao, Fang
Su, Meng-Yun
Jiang, Shan
Luo, Long-Fei
Shi, Ying
Lei, Tie-Chi
author_facet Miao, Fang
Su, Meng-Yun
Jiang, Shan
Luo, Long-Fei
Shi, Ying
Lei, Tie-Chi
author_sort Miao, Fang
collection PubMed
description Although vitamin C (VC, L-ascorbic acid) has been widely used as a skin lightening agent for a long time, the mechanism by which it inhibits melanogenesis remains poorly understood. It is well-documented that the intramelanocytic pH is an important factor in regulating tyrosinase function and melanosome maturation. The activity of tyrosinase, the rate-limiting enzyme required for melanin synthesis, is generally minimal in an acidic environment. Given that VC is an acidic compound, we might speculate that the intracellular acidification of melanocytes induced by VC likely reduces melanin content through the suppression of tyrosinase activity. The results of this study reveal that treatment of melanocytes with VC or its derivatives, magnesium ascorbyl phosphate (MAP) and 3-O-ethyl-L-ascorbic acid (AAE), resulted in significant decreases in the tyrosinase activity and melanin content and in the levels of intracellular reactive oxygen species (ROS), indicating that VC and its derivatives possess antimelanogenic and antioxidative activities. Western blotting analysis indicated that VC, MAP, and AAE exert their antimelanogenic activity by inhibiting the tyrosinase activity rather than by downregulating the expression of melanogenic proteins such as tyrosinase, premelanosome protein 17 (Pmel17) and microphthalmia-associated transcription factor (MITF). Further, we found that the reduced tyrosinase activity of melanocytes treated with VC or its derivatives could be reactivated following intracellular neutralization induced by ammonium chloride (NH(4)Cl) or concanamycin A (Con A). Finally, we examined the expression of sodium-dependent VC transporter-2 (SVCT-2) using western blotting and qPCR, which revealed that there was a significant increase in the expression of SVCT-2 in melanocytes following treatment with VC. VC-mediated intracellular acidification was neutralized by phloretin (a putative SVCT-2 inhibitor) in a dose-dependent manner. Taken together, these data show that VC and its derivatives suppress tyrosinase activity through cytoplasmic acidification that potentially results from enhanced VC transmembrane transport via the VC transporter SVCT-2.
format Online
Article
Text
id pubmed-6535878
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-65358782019-06-18 Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives Miao, Fang Su, Meng-Yun Jiang, Shan Luo, Long-Fei Shi, Ying Lei, Tie-Chi Oxid Med Cell Longev Research Article Although vitamin C (VC, L-ascorbic acid) has been widely used as a skin lightening agent for a long time, the mechanism by which it inhibits melanogenesis remains poorly understood. It is well-documented that the intramelanocytic pH is an important factor in regulating tyrosinase function and melanosome maturation. The activity of tyrosinase, the rate-limiting enzyme required for melanin synthesis, is generally minimal in an acidic environment. Given that VC is an acidic compound, we might speculate that the intracellular acidification of melanocytes induced by VC likely reduces melanin content through the suppression of tyrosinase activity. The results of this study reveal that treatment of melanocytes with VC or its derivatives, magnesium ascorbyl phosphate (MAP) and 3-O-ethyl-L-ascorbic acid (AAE), resulted in significant decreases in the tyrosinase activity and melanin content and in the levels of intracellular reactive oxygen species (ROS), indicating that VC and its derivatives possess antimelanogenic and antioxidative activities. Western blotting analysis indicated that VC, MAP, and AAE exert their antimelanogenic activity by inhibiting the tyrosinase activity rather than by downregulating the expression of melanogenic proteins such as tyrosinase, premelanosome protein 17 (Pmel17) and microphthalmia-associated transcription factor (MITF). Further, we found that the reduced tyrosinase activity of melanocytes treated with VC or its derivatives could be reactivated following intracellular neutralization induced by ammonium chloride (NH(4)Cl) or concanamycin A (Con A). Finally, we examined the expression of sodium-dependent VC transporter-2 (SVCT-2) using western blotting and qPCR, which revealed that there was a significant increase in the expression of SVCT-2 in melanocytes following treatment with VC. VC-mediated intracellular acidification was neutralized by phloretin (a putative SVCT-2 inhibitor) in a dose-dependent manner. Taken together, these data show that VC and its derivatives suppress tyrosinase activity through cytoplasmic acidification that potentially results from enhanced VC transmembrane transport via the VC transporter SVCT-2. Hindawi 2019-05-12 /pmc/articles/PMC6535878/ /pubmed/31214276 http://dx.doi.org/10.1155/2019/2084805 Text en Copyright © 2019 Fang Miao et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Miao, Fang
Su, Meng-Yun
Jiang, Shan
Luo, Long-Fei
Shi, Ying
Lei, Tie-Chi
Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title_full Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title_fullStr Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title_full_unstemmed Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title_short Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives
title_sort intramelanocytic acidification plays a role in the antimelanogenic and antioxidative properties of vitamin c and its derivatives
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535878/
https://www.ncbi.nlm.nih.gov/pubmed/31214276
http://dx.doi.org/10.1155/2019/2084805
work_keys_str_mv AT miaofang intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives
AT sumengyun intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives
AT jiangshan intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives
AT luolongfei intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives
AT shiying intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives
AT leitiechi intramelanocyticacidificationplaysaroleintheantimelanogenicandantioxidativepropertiesofvitamincanditsderivatives