Cargando…
Burn wound classification model using spatial frequency-domain imaging and machine learning
Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have been used to examine tissue properties to infer b...
Autores principales: | Rowland, Rebecca, Ponticorvo, Adrien, Baldado, Melissa, Kennedy, Gordon T., Burmeister, David M., Christy, Robert J., Bernal, Nicole P., Durkin, Anthony J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536007/ https://www.ncbi.nlm.nih.gov/pubmed/31134769 http://dx.doi.org/10.1117/1.JBO.24.5.056007 |
Ejemplares similares
-
Spatial frequency domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft healing
por: Kennedy, Gordon T., et al.
Publicado: (2019) -
Spatial Frequency Domain Imaging (SFDI) of clinical burns: A case
report
por: Ponticorvo, Adrien, et al.
Publicado: (2020) -
Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy
por: Saager, Rolf B., et al.
Publicado: (2019) -
Spatial frequency domain imager based on a compact multiaperture camera: testing and feasibility for noninvasive burn severity assessment
por: Kennedy, Gordon T, et al.
Publicado: (2021) -
Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging
por: Phan, Thinh, et al.
Publicado: (2021)