Cargando…
Estimating global ocean heat content from tidal magnetic satellite observations
Ocean tides generate electromagnetic (EM) signals that are emitted into space and can be recorded with low-Earth-orbiting satellites. Observations of oceanic EM signals contain aggregated information about global transports of water, heat, and salinity. We utilize an artificial neural network (ANN)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536534/ https://www.ncbi.nlm.nih.gov/pubmed/31133648 http://dx.doi.org/10.1038/s41598-019-44397-8 |
Sumario: | Ocean tides generate electromagnetic (EM) signals that are emitted into space and can be recorded with low-Earth-orbiting satellites. Observations of oceanic EM signals contain aggregated information about global transports of water, heat, and salinity. We utilize an artificial neural network (ANN) as a non-linear inversion scheme and demonstrate how to infer ocean heat content (OHC) estimates from magnetic signals of the lunar semi-diurnal (M2) tide. The ANN is trained using monthly OHC estimates based on oceanographic in-situ data from 1990–2015 and the corresponding computed tidal magnetic fields at satellite altitude. We show that the ANN can closely recover inter-annual and decadal OHC variations from simulated tidal magnetic signals. Using the trained ANN, we present the first OHC estimates from recently extracted tidal magnetic satellite observations. Such space-borne OHC estimates can complement the already existing in-situ measurements of upper ocean temperature and can also allow insights into abyssal OHC, where in-situ data are still very scarce. |
---|