Cargando…

Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures

The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs....

Descripción completa

Detalles Bibliográficos
Autores principales: Binder, J., Howarth, J., Withers, F., Molas, M. R., Taniguchi, T., Watanabe, K., Faugeras, C., Wysmolek, A., Danovich, M., Fal’ko, V. I., Geim, A. K., Novoselov, K. S., Potemski, M., Kozikov, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536535/
https://www.ncbi.nlm.nih.gov/pubmed/31133651
http://dx.doi.org/10.1038/s41467-019-10323-9
_version_ 1783421766396280832
author Binder, J.
Howarth, J.
Withers, F.
Molas, M. R.
Taniguchi, T.
Watanabe, K.
Faugeras, C.
Wysmolek, A.
Danovich, M.
Fal’ko, V. I.
Geim, A. K.
Novoselov, K. S.
Potemski, M.
Kozikov, A.
author_facet Binder, J.
Howarth, J.
Withers, F.
Molas, M. R.
Taniguchi, T.
Watanabe, K.
Faugeras, C.
Wysmolek, A.
Danovich, M.
Fal’ko, V. I.
Geim, A. K.
Novoselov, K. S.
Potemski, M.
Kozikov, A.
author_sort Binder, J.
collection PubMed
description The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe(2)/MoS(2) type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe(2) and MoS(2), Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively.
format Online
Article
Text
id pubmed-6536535
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65365352019-05-29 Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures Binder, J. Howarth, J. Withers, F. Molas, M. R. Taniguchi, T. Watanabe, K. Faugeras, C. Wysmolek, A. Danovich, M. Fal’ko, V. I. Geim, A. K. Novoselov, K. S. Potemski, M. Kozikov, A. Nat Commun Article The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe(2)/MoS(2) type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe(2) and MoS(2), Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively. Nature Publishing Group UK 2019-05-27 /pmc/articles/PMC6536535/ /pubmed/31133651 http://dx.doi.org/10.1038/s41467-019-10323-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Binder, J.
Howarth, J.
Withers, F.
Molas, M. R.
Taniguchi, T.
Watanabe, K.
Faugeras, C.
Wysmolek, A.
Danovich, M.
Fal’ko, V. I.
Geim, A. K.
Novoselov, K. S.
Potemski, M.
Kozikov, A.
Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title_full Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title_fullStr Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title_full_unstemmed Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title_short Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
title_sort upconverted electroluminescence via auger scattering of interlayer excitons in van der waals heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536535/
https://www.ncbi.nlm.nih.gov/pubmed/31133651
http://dx.doi.org/10.1038/s41467-019-10323-9
work_keys_str_mv AT binderj upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT howarthj upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT withersf upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT molasmr upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT taniguchit upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT watanabek upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT faugerasc upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT wysmoleka upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT danovichm upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT falkovi upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT geimak upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT novoselovks upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT potemskim upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures
AT kozikova upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures