Cargando…
Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures
The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs....
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536535/ https://www.ncbi.nlm.nih.gov/pubmed/31133651 http://dx.doi.org/10.1038/s41467-019-10323-9 |
_version_ | 1783421766396280832 |
---|---|
author | Binder, J. Howarth, J. Withers, F. Molas, M. R. Taniguchi, T. Watanabe, K. Faugeras, C. Wysmolek, A. Danovich, M. Fal’ko, V. I. Geim, A. K. Novoselov, K. S. Potemski, M. Kozikov, A. |
author_facet | Binder, J. Howarth, J. Withers, F. Molas, M. R. Taniguchi, T. Watanabe, K. Faugeras, C. Wysmolek, A. Danovich, M. Fal’ko, V. I. Geim, A. K. Novoselov, K. S. Potemski, M. Kozikov, A. |
author_sort | Binder, J. |
collection | PubMed |
description | The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe(2)/MoS(2) type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe(2) and MoS(2), Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively. |
format | Online Article Text |
id | pubmed-6536535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65365352019-05-29 Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures Binder, J. Howarth, J. Withers, F. Molas, M. R. Taniguchi, T. Watanabe, K. Faugeras, C. Wysmolek, A. Danovich, M. Fal’ko, V. I. Geim, A. K. Novoselov, K. S. Potemski, M. Kozikov, A. Nat Commun Article The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe(2)/MoS(2) type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe(2) and MoS(2), Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively. Nature Publishing Group UK 2019-05-27 /pmc/articles/PMC6536535/ /pubmed/31133651 http://dx.doi.org/10.1038/s41467-019-10323-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Binder, J. Howarth, J. Withers, F. Molas, M. R. Taniguchi, T. Watanabe, K. Faugeras, C. Wysmolek, A. Danovich, M. Fal’ko, V. I. Geim, A. K. Novoselov, K. S. Potemski, M. Kozikov, A. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title | Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title_full | Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title_fullStr | Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title_full_unstemmed | Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title_short | Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures |
title_sort | upconverted electroluminescence via auger scattering of interlayer excitons in van der waals heterostructures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536535/ https://www.ncbi.nlm.nih.gov/pubmed/31133651 http://dx.doi.org/10.1038/s41467-019-10323-9 |
work_keys_str_mv | AT binderj upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT howarthj upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT withersf upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT molasmr upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT taniguchit upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT watanabek upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT faugerasc upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT wysmoleka upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT danovichm upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT falkovi upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT geimak upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT novoselovks upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT potemskim upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures AT kozikova upconvertedelectroluminescenceviaaugerscatteringofinterlayerexcitonsinvanderwaalsheterostructures |