Cargando…

Characterization of the virome of Paracoccus spp. (Alphaproteobacteria) by combined in silico and in vivo approaches

Bacteria of the genus Paracoccus inhabit various pristine and anthropologically-shaped environments. Many Paracoccus spp. have biotechnological value and several are opportunistic human pathogens. Despite extensive knowledge of their metabolic potential and genome architecture, little is known about...

Descripción completa

Detalles Bibliográficos
Autores principales: Decewicz, Przemyslaw, Dziewit, Lukasz, Golec, Piotr, Kozlowska, Patrycja, Bartosik, Dariusz, Radlinska, Monika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536676/
https://www.ncbi.nlm.nih.gov/pubmed/31133656
http://dx.doi.org/10.1038/s41598-019-44460-4
Descripción
Sumario:Bacteria of the genus Paracoccus inhabit various pristine and anthropologically-shaped environments. Many Paracoccus spp. have biotechnological value and several are opportunistic human pathogens. Despite extensive knowledge of their metabolic potential and genome architecture, little is known about viruses of Paracoccus spp. So far, only three active phages infecting these bacteria have been identified. In this study, 16 Paracoccus strains were screened for the presence of active temperate phages, which resulted in the identification of five novel viruses. Mitomycin C-induced prophages were isolated, visualized and their genomes sequenced and thoroughly analyzed, including functional validation of their toxin-antitoxin systems. This led to the identification of the first active Myoviridae phage in Paracoccus spp. and four novel Siphoviridae phages. In addition, another 53 prophages were distinguished in silico within genomic sequences of Paracoccus spp. available in public databases. Thus, the Paracoccus virome was defined as being composed of 66 (pro)phages. Comparative analyses revealed the diversity and mosaicism of the (pro)phage genomes. Moreover, similarity networking analysis highlighted the uniqueness of Paracoccus (pro)phages among known bacterial viruses.