Cargando…
Mixed deep learning and natural language processing method for fake-food image recognition and standardization to help automated dietary assessment
OBJECTIVE: The present study tested the combination of an established and a validated food-choice research method (the ‘fake food buffet’) with a new food-matching technology to automate the data collection and analysis. DESIGN: The methodology combines fake-food image recognition using deep learnin...
Autores principales: | Mezgec, Simon, Eftimov, Tome, Bucher, Tamara, Koroušić Seljak, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536832/ https://www.ncbi.nlm.nih.gov/pubmed/29623869 http://dx.doi.org/10.1017/S1368980018000708 |
Ejemplares similares
-
NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment
por: Mezgec, Simon, et al.
Publicado: (2017) -
StandFood: Standardization of Foods Using a Semi-Automatic System for Classifying and Describing Foods According to FoodEx2
por: Eftimov, Tome, et al.
Publicado: (2017) -
A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations
por: Eftimov, Tome, et al.
Publicado: (2017) -
FoodBase corpus: a new resource of annotated food entities
por: Popovski, Gorjan, et al.
Publicado: (2019) -
From language models to large-scale food and biomedical knowledge graphs
por: Cenikj, Gjorgjina, et al.
Publicado: (2023)